基于仿射传播的复杂网络社区发现算法研究
[Abstract]:Many studies have shown that there is a common community structure in complex networks, that is, the nodes within the community are closely connected, but the node connections between the communities are relatively sparse. The community structure within complex networks has very important theoretical significance and application value, which can help people understand the functions of complex networks, discover the potential laws in complex networks and predict the behavior of complex networks. This paper mainly focuses on the complex network community discovery and affine propagation algorithms, including the following three aspects: first, a community discovery algorithm based on structural similarity affine propagation (SS-FAP) is proposed. Firstly, the structural similarity is selected as the similarity measure between nodes, and an optimized method is used to calculate the similarity matrix. Secondly, the calculated similarity matrix is used as input, and the fast affine propagation algorithm is used to cluster. Finally, the final community structure set is obtained. The experimental results show that SS-FAP has good community discovery ability and high quality community structure both on simulated and real networks. Secondly, a community discovery algorithm (MAP). Based on modular affine propagation is proposed. The main idea of the algorithm is to embed the modular degree function Q into the iterative process of the AP algorithm and obtain the optimal community discovery result based on the modularity optimization. The experimental results show that compared with the traditional LPA algorithm, FN algorithm, BGLL algorithm and the original AP algorithm, the MAP algorithm can find the community structure in the network more effectively. Finally, a community discovery algorithm prototype system is implemented. The prototype system mainly implements SS-FAP algorithm, MAP algorithm, LPA algorithm and four community discovery evaluation criteria, which are normalized mutual information, FM index, accuracy and module degree, respectively. And the force-guided layout algorithm is used to visualize the network.
【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O157.5
【参考文献】
相关期刊论文 前10条
1 刘大有;金弟;何东晓;黄晶;杨建宁;杨博;;复杂网络社区挖掘综述[J];计算机研究与发展;2013年10期
2 黄健斌;钟翔;孙鹤立;茆婉婷;;基于相似性模块度最大约束标记传播的网络社团发现算法[J];北京大学学报(自然科学版);2013年03期
3 黄健斌;白杨;康剑梅;钟翔;张鑫;孙鹤立;;一种基于同步动力学模型的网络社团发现方法[J];计算机研究与发展;2012年10期
4 林旺群;卢风顺;丁兆云;吴泉源;周斌;贾焰;;基于带权图的层次化社区并行计算方法[J];软件学报;2012年06期
5 金弟;杨博;刘杰;刘大有;何东晓;;复杂网络簇结构探测——基于随机游走的蚁群算法[J];软件学报;2012年03期
6 刘旭;易东云;;基于局部相似性的复杂网络社区发现方法[J];自动化学报;2011年12期
7 冯晓磊;于洪涛;;基于流形距离的半监督近邻传播聚类算法[J];计算机应用研究;2011年10期
8 刘旭;易东云;;基于向量划分的复杂网络社区结构发现[J];中国科学:物理学 力学 天文学;2011年09期
9 赵卓翔;王轶彤;田家堂;周泽学;;社会网络中基于标签传播的社区发现新算法[J];计算机研究与发展;2011年S3期
10 黄发良;肖南峰;;基于线图与PSO的网络重叠社区发现[J];自动化学报;2011年09期
相关硕士学位论文 前4条
1 王淑靖;非重叠社区发现中近邻传播算法的研究与应用[D];中国矿业大学;2016年
2 周然然;社会网络中局部社区发现算法研究[D];中国矿业大学;2015年
3 包伟伟;无线传感器网络低延迟邻居发现算法研究[D];中国矿业大学;2015年
4 石梦雨;基于改进标签传播算法的社区挖掘研究[D];中国矿业大学;2015年
,本文编号:2321392
本文链接:https://www.wllwen.com/kejilunwen/yysx/2321392.html