量子Lyapunov控制的理论研究及应用
[Abstract]:As a new interdisciplinary subject, quantum cybernetics is an indispensable basic theory to realize quantum computer and quantum communication. Its development will promote physics, chemistry, biology and other natural disciplines, and promote the progress of quantum technology. Quantum control mainly covers a series of basic issues, such as the manipulation and preparation of quantum states, the construction of non-decoherence space and so on. The research progress of quantum control will also help to enhance the status of quantum information in future communications. In this paper, we focus on the applications of Lyapunov control in different quantum systems, including spin 1 / 2 chain, spin fermion free 1 dimensional Kitaev chain, 1 dimensional double potential well optical lattice, and 1 D double potential well optical lattice. A hybrid system of topological superconducting wires and quantum dots and 1 D Fermi gas trapped in optical lattices. These applications will promote quantum information processing in the future. Our research begins with chapter three. In the first and second chapters, the background of the research work is described, and some basic theorems, such as Lyapunov's theorem of urgency and invariant set theorem, are given, which provide the theoretical basis for the next research work. In addition, several design methods of Lyapunov function are briefly introduced. In chapter 3, the high fidelity transfer of quantum states in the spin 1 / 2 chain is realized by adjusting the coupling strength between the boundary spin and the nearest neighbor spin or the Larmor frequency of the boundary spin. Different from the traditional quantum state transfer method, this method has the following advantages: the final state of the system is steady-state, the transition time of the final state of the system does not need to be controlled accurately, and it is robust to the disturbance of the control field. The method can also be applied to the quantum state transfer of spin chains with different periodic structures. In chapter 4, in the quantum system described by the quadratic Hamiltonian, the quasi-particle is driven to the topological mode (topological modes). In a Fermi system, a one-dimensional Kitaev chain without spin fermions is taken as an example to show how to obtain Majorana zero modules. In Bose systems, take the Su-Schrieffer-Heeger model as an example to show how to drive the system to the boundary mode (edge mode). Finally, the possibility of replacing time-dependent control field waveform with square wave pulse is discussed. In chapter 5, by means of the Majorana fermion in the topological superconducting wire, four different schemes are used to realize the long-range entanglement of two quantum dots. That is, the teleportation scheme; the cross Andreev reflection scheme; the internal point spin flip scheme; the transcendental internal point spin flip scheme. We use Lyapunov control and adiabatic process to form long-range entanglement respectively. Compared with adiabatic process, the advantage of Lyapunov control lies in flexible control of Hamiltonian and shortening of control time. In the sixth chapter, we study how to realize the boundary state (edge state). In the Aubry-Andre-Harper model. The advantage of this scheme is that the boundary state can be realized only by adjusting the energy of the boundary lattice. Then we use the deformed Lyapunov function to design the control field to realize the boundary-boundary entanglement, that is, the maximal entangled state of two boundary states. This method provides a new effective method for boundary state manipulation. The last chapter gives the summary and prospect of this paper.
【学位授予单位】:大连理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O413;O231
【相似文献】
相关期刊论文 前10条
1 万陵德;余洪伟;程宝莲;鲁公儒;;分立对称性与三代费米子的统一(Ⅱ)[J];新乡师范学院学报(自然科学版);1984年01期
2 江向东;;SU(6)大统一模型[J];高能物理与核物理;1984年03期
3 曾远文;费米子算符的一些关系式[J];大学物理;1984年09期
4 郑波;;可解的1+1维格点U(1)规范模型与费米子加倍问题[J];高能物理与核物理;1990年04期
5 罗向前;陈启洲;;低维规范理论中的费米子真空凝聚[J];高能物理与核物理;1992年08期
6 许伯威;费米子数的时空性质[J];兰州大学学报;1978年03期
7 许伯威;;费米子数的时空性质[J];高能物理与核物理;1979年01期
8 王维玺;;E_6的大统一模型[J];内蒙古大学学报(自然科学版);1982年01期
9 孙洪洲;韩其智;;玻色子费米子体系波函数的分类[J];高能物理与核物理;1982年03期
10 马中骐;东方晓;杜东生;薛丕友;;一个可能的SU(9)大统一模型[J];高能物理与核物理;1982年03期
相关会议论文 前1条
1 甘姝;汪凯戈;;双费米子的分束器干涉[A];第十三届全国量子光学学术报告会论文摘要集[C];2008年
相关重要报纸文章 前4条
1 记者 常丽君;美科学家造出全新量子物质形态[N];科技日报;2012年
2 周清春;第六态:敲开物质世界的又一扇大门[N];科技日报;2005年
3 张孟军;科学家制出玻色-爱因斯坦凝聚态物质[N];科技日报;2003年
4 记者 毛磊;2003年度最重要物理学新闻[N];新华每日电讯;2003年
相关博士学位论文 前6条
1 朱小宇;一维系统中的Majorana费米子和分数费米子[D];南京大学;2016年
2 施志成;量子Lyapunov控制的理论研究及应用[D];大连理工大学;2016年
3 李伟;狄拉克费米子体系中的手征相变[D];中国科学技术大学;2010年
4 王宁;基于Majorana费米子的量子点体系中量子输运和自旋性质的研究[D];河北师范大学;2015年
5 王景荣;狄拉克费米子体系中的量子相变和非费米液体行为[D];中国科学技术大学;2014年
6 李海涛;厚膜上的费米子共振态[D];兰州大学;2011年
相关硕士学位论文 前6条
1 郑翌洁;拓扑绝缘体台阶结构以及Majorana费米子的输运特性[D];河北师范大学;2016年
2 苗子京;Majorana边态导致的交叉Andreev反射研究[D];河北师范大学;2016年
3 崔会丽;基于Majorana费米子的热电性质[D];河北师范大学;2014年
4 徐增光;膜世界上费米子的新局域化机制及f(R)膜世界引力共振态的研究[D];兰州大学;2014年
5 寇朝帅;幺正费米气体热力学量的低温与高温展开[D];华中师范大学;2014年
6 毛普健;5维黑洞背景下费米子的霍金辐射[D];兰州大学;2012年
,本文编号:2335954
本文链接:https://www.wllwen.com/kejilunwen/yysx/2335954.html