直觉判断矩阵与区间互补判断矩阵的若干性质研究
[Abstract]:In the process of comparing schemes or attributes, due to the uncertainty and complexity of objective things, the ambiguity of human cognition and the limitation of their own knowledge, the decision makers often give an uncertain judgment matrix. The common uncertain judgment matrix includes interval judgment matrix, intuitive judgment matrix and so on. The research on these two kinds of judgment matrices is mainly focused on how to judge the consistency of judgment matrices and how to use the consistency of judgment matrices to sort schemes. On the one hand, this paper studies the consistency of intuitionistic judgment matrix and interval complementary judgment matrix, and how to use these consistency to determine the weight of the scheme. On the other hand, due to individual differences, the preference information given by decision-makers to schemes or attributes is often different, such as fuzzy complementary judgment matrix, interval complementary judgment matrix, intuitive judgment matrix. This paper also studies the interval complementary judgment matrix, the method of transforming the intuitionistic judgment matrix into fuzzy complementary judgment matrix and the related properties in the process of transformation. The main contents of this thesis are as follows: (1) the scheme ordering method based on intuitionistic judgement matrix directed graph is studied. According to the characteristics of intuitionistic fuzzy numbers, the concept of directed graph of intuitionistic judgment matrix is given, and the condition that the directed graph of intuitionistic judgment matrix has unique directed path is pointed out. For the intuitionistic judgment matrix with weak transitivity, this paper presents a scheme ordering method based on directed graph of intuitionistic judgment matrix. (2) A new definition of additive consistency of intuitionistic judgment matrix and a method of determining scheme weight are given. It is shown that there is no strong or weak relation between additive consistency of intuitionistic judgment matrix and weak transitivity of intuitionistic judgment matrix by counterexample, and the deficiency of traditional definition of additive consistency is analyzed. According to the characteristics of intuitionistic fuzzy numbers, a new definition of additive consistency of intuitionistic judgment matrix is proposed and applied to the transfer method to determine the weight of the scheme. In addition, a new definition of additive consistency of intuitionistic judgment matrix is redefined from the angle of the relationship between intuitionistic judgment matrix and weight. (3) Quasi-consistency of interval complementary judgment matrix is studied. In this paper, the additive consistency and product consistency of fuzzy complementary judgment matrix are analyzed. It is found that they contain the characteristics of relative advantage degree. By using this characteristic, the concepts of quasi-additive consistency and quasi-product consistency of interval complementary judgment matrix are given. It is shown that they are essentially the same, so they are uniformly called quasi consistency of interval complementary judgment matrix. For the quasi-consistent interval complementary judgment matrix and the general interval complementary judgment matrix, the model is established to calculate the interval number type weights. (4) the interval complementary judgment matrix is studied. The intuitionistic judgment matrix is transformed into the correlation property of fuzzy complementary judgment matrix. Aiming at fuzzy complementary judgment matrix, interval complementary judgment matrix and intuitionistic judgment matrix, this paper gives a method of how to unify and assemble these three preference relations. Firstly, the characteristics of fuzzy complementary judgment matrix are analyzed, and the interval complementary judgment matrix and intuitionistic judgment matrix are transformed into fuzzy complementary judgment matrix by using this characteristic, thus realizing the uniformity of these three kinds of judgment matrices. Then the rationality of the conversion process is studied.
【学位授予单位】:合肥工业大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:O151.21
【相似文献】
相关期刊论文 前10条
1 孔松泉,达庆利,徐泽水;互补判断矩阵排序的广义χ~2法[J];东南大学学报(自然科学版);2002年04期
2 樊治平,姜艳萍;互补判断矩阵一致性改进方法[J];东北大学学报;2003年01期
3 樊治平,姜艳萍;互补判断矩阵中导入新元素的强保序条件[J];系统工程理论与实践;2003年03期
4 侯福均,吴祈宗;模糊数互补判断矩阵的加性一致性[J];北京理工大学学报;2004年04期
5 徐泽水;残缺互补判断矩阵[J];系统工程理论与实践;2004年06期
6 陈华友,周礼刚;互补判断矩阵排序的最小偏差法的性质[J];运筹与管理;2004年03期
7 徐泽水;基于残缺互补判断矩阵的交互式群决策方法[J];控制与决策;2005年08期
8 侯福均,吴祈宗;Ⅰ型不确定数互补判断矩阵的一致性和排序研究[J];系统工程理论与实践;2005年10期
9 侯福均,吴祈宗;不确定数互补模糊偏好关系与不确定数互补判断矩阵[J];北京理工大学学报;2005年10期
10 周宏安;刘三阳;岳惠萍;;基于不确定互补判断矩阵的多目标决策方法研究[J];数学的实践与认识;2006年11期
相关会议论文 前8条
1 聂凤鹤;聂凤飞;;基于熵的互补判断矩阵一致性问题[A];第九届中国不确定系统年会、第五届中国智能计算大会、第十三届中国青年信息与管理学者大会论文集[C];2011年
2 徐泽水;;互补判断矩阵排序的最小夹角法[A];第四届中国青年运筹与管理学者大会论文集[C];2001年
3 侯福均;吴祈宗;;基于期望值矩阵的模糊数互补判断矩阵一致性研究[A];中国运筹学会第七届学术交流会论文集(中卷)[C];2004年
4 胡宏宇;朱建军;丁叶;;残缺互补判断矩阵的可能值推断、排序方法及应用[A];第十二届中国管理科学学术年会论文集[C];2010年
5 侯福均;吴祈宗;;基于目标规划的区间数互补判断矩阵方案排序[A];第三届不确定系统年会论文集[C];2005年
6 朱建军;刘思峰;方志耕;;基于区间灰数的互补判断矩阵集结方法研究[A];2006年灰色系统理论及其应用学术会议论文集[C];2006年
7 张薇薇;金菊良;张礼兵;;基于遗传算法的三角模糊数互补判断矩阵排序方法[A];第四届全国决策科学/多目标决策研讨会论文集[C];2007年
8 占济舟;吕跃进;成先娟;;关于模糊互补判断的标度问题[A];中国系统工程学会决策科学专业委员会第六届学术年会论文集[C];2005年
相关博士学位论文 前1条
1 涂振坤;直觉判断矩阵与区间互补判断矩阵的若干性质研究[D];合肥工业大学;2015年
相关硕士学位论文 前8条
1 王艳青;判断矩阵有关权重的求解方法研究[D];广西大学;2011年
2 黄靓;不完全信息下的排序[D];西南大学;2009年
3 史文雷;区间数互补判断矩阵的理论问题研究[D];广西大学;2007年
4 洪丽双;模糊互补判断矩阵的一致性研究[D];上海交通大学;2012年
5 胡明明;区间型模糊多属性决策的若干问题研究[D];广西大学;2012年
6 田文千;区间型多属性决策判断矩阵的一致性和排序研究及应用[D];重庆大学;2009年
7 郝颖娟;有偏好信息的不确定多属性决策途径[D];曲阜师范大学;2009年
8 刘坦;判断矩阵的一致性和权重向量的求解方法研究[D];曲阜师范大学;2008年
,本文编号:2353139
本文链接:https://www.wllwen.com/kejilunwen/yysx/2353139.html