三维Korteweg型非齐次不可压流在Slip边界条件下的Capillarity-Viscosity消失极限
发布时间:2018-11-24 11:22
【摘要】:本文研究的是在平坦区域里,三维Korteweg型非齐次不可压流在slip边界条件下可解性,正则性和capillarity-viscosity系数的消失极限。为解决capillarity-viscosity 系数的消失极限问题,我们在区域内添加初始密度边界条件 %絇0·n = 0.证明了当粘性系数和毛细血管系数趋向于零时,Korteweg型非齐次不可压流的解收敛到对应的具有相同初始条件的理想非齐次不可压Euler系统的解,并得到了一个收敛率结果。
[Abstract]:In this paper, we study the solvability, regularity and the vanishing limit of capillarity-viscosity coefficients for three-dimensional inhomogeneous incompressible flows of Korteweg type under slip boundary conditions in a flat region. In order to solve the problem of vanishing limit of capillarity-viscosity coefficient, we add the initial density boundary condition% 0 n = 0 in the region. It is proved that when the viscosity coefficient and capillary coefficient tend to 00:00, the solution of Korteweg inhomogeneous incompressible flow converges to the solution of the ideal inhomogeneous incompressible Euler system with the same initial conditions, and a convergence rate result is obtained.
【学位授予单位】:湘潭大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O175
本文编号:2353509
[Abstract]:In this paper, we study the solvability, regularity and the vanishing limit of capillarity-viscosity coefficients for three-dimensional inhomogeneous incompressible flows of Korteweg type under slip boundary conditions in a flat region. In order to solve the problem of vanishing limit of capillarity-viscosity coefficient, we add the initial density boundary condition% 0 n = 0 in the region. It is proved that when the viscosity coefficient and capillary coefficient tend to 00:00, the solution of Korteweg inhomogeneous incompressible flow converges to the solution of the ideal inhomogeneous incompressible Euler system with the same initial conditions, and a convergence rate result is obtained.
【学位授予单位】:湘潭大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O175
【参考文献】
相关期刊论文 前2条
1 ;Remarks on Vanishing Viscosity Limits for the 3D Navier-Stokes Equations with a Slip Boundary Condition[J];Chinese Annals of Mathematics(Series B);2011年03期
2 谭忠;王焰金;;STRONG SOLUTIONS FOR THE INCOMPRESSIBLE FLUID MODELS OF KORTEWEG TYPE[J];Acta Mathematica Scientia;2010年03期
,本文编号:2353509
本文链接:https://www.wllwen.com/kejilunwen/yysx/2353509.html