Eichler变换关系及其应用
发布时间:2018-11-27 17:18
【摘要】:设k是一个正的奇数,L是定义在有理数域上的k:维正定二次型空间中的一个格,NL是L的level,M(L)是由genL中不同等价类对应的θ级数生成的线性空间.我们证明了,对于整除NL的奇素数p,如果Lp = Lp,1NLp,2,其中Lp,1是模的,Lp,2是(p)-模的,并且QpLp,2是非迷向的,则M(L;p):= M(L)+Tp2.M(L)在Hecke算子Tp2的作用下不变.如果L2同构于以下三种情况之一:(?),或者(?),或者(?),其中ε ∈Z2x,k:=k-1/2,则M(L2;2):= T22.M(L)+ T222.M(L)在Hecke算子T22的作用下不变·我们还得到了Hecke算子在尖空间中的一些不变子空间.设f是一个正定的整的三元二次型,它对应的θ级数是θ(z;f)= ∑n=0∞=a(n;f)qn.固定任何一个满足a(t;f)≠ 0的无平方因子的正整数t,定义p(n;t,f):= a(tn2;f)/a(t;f)·当f =x12 + x22+ x32且t = 1时,Hurwitz证明了p(n;t,f)是积性的并给出了表达式.Cooper和Lam证明了四个类似的公式,并给出了对某些其他情形的猜想.用我们得到的结果,我们可以对很多情形验证p(n;t,f)的积性.Cooper和Lam的猜想中的情形被全部解决.设f是一个正定的整的三元二次型,Nf是f的level.设gen(f)中恰有两个等价类,用g表示另一个等价类的代表元.进一步假设spn(f)=spn(g),我们证明,如果(M,Nf= 1是局部可表的有平方因子的正整数,则它能被f表示.Ono和Soundararajan的关于f = x12+ x22+ 10x32的结果,裴定一的关于f = x12+ 7x22+ 7x32的结果和Kelley的关于f =x12=x22+7x32i的结果都是我们上述定理的推论.
[Abstract]:Let k be a positive odd number, L be a lattice defined in the space of K: dimensional positive definite quadratic form on the rational number field, and NL be the level,M (L) of L is a linear space generated by 胃 series corresponding to different equivalent classes in genL. We prove that for the odd prime number p of divisible NL, if Lp = Lp,1N Lp,2, where Lp,1 is module, Lp,2 is (p) -module, and QpLp,2 is nonisotropic, then M (L; P): = M (L) Tp2.M (L) is invariant under the action of Hecke operator Tp2. If L _ 2 is isomorphic to one of the following three conditions: (?), or (?), where 蔚 鈭,
本文编号:2361528
[Abstract]:Let k be a positive odd number, L be a lattice defined in the space of K: dimensional positive definite quadratic form on the rational number field, and NL be the level,M (L) of L is a linear space generated by 胃 series corresponding to different equivalent classes in genL. We prove that for the odd prime number p of divisible NL, if Lp = Lp,1N Lp,2, where Lp,1 is module, Lp,2 is (p) -module, and QpLp,2 is nonisotropic, then M (L; P): = M (L) Tp2.M (L) is invariant under the action of Hecke operator Tp2. If L _ 2 is isomorphic to one of the following three conditions: (?), or (?), where 蔚 鈭,
本文编号:2361528
本文链接:https://www.wllwen.com/kejilunwen/yysx/2361528.html