关于高维统计模型的似然比检验
[Abstract]:In big data's time, we often encounter a lot of problems in high-dimensional data. These problems are usually characterized by large dimension p and sample size n, which are usually called "big p, large n" problems. Traditional multivariate statistical analysis can solve the problem of small dimension p or fixed dimension, such as classical chi-square approximation method, likelihood ratio test method, etc. These methods do not solve problems or even fail. Therefore, it is very meaningful to find some new methods to solve high dimensional problems. In this paper, we consider the problem of high dimensional hypothesis testing for two models with large dimension p and sample size n. The first consideration is the test of high dimensional hypothesis with cyclic symmetric covariance structure. Under two slightly different assumptions, by using the continuity theorem of moment generating function and the asymptotic expansion of gamma function, it is proved that in normal population, when the original hypothesis holds, The likelihood ratio statistic converges to a random variable of normal distribution according to the distribution. Then, the high dimensional likelihood ratio test method (HLRT) and chi-square approximation method (BOX), are proposed in this paper. The high dimensional edgeworth expansion method (HEE) and the more accurate high dimensional edgeworth expansion method (AHEE) are simulated. The results show that the proposed HLRT method is better than the BOX method and the HEE method, and is as good as the AHEE method in dealing with high-dimensional data. In chapter 3, the likelihood ratio test of minimum eigenvalue equivalence in high dimensional principal component analysis is studied. Under the original assumption and the assumption of normal population, by using the continuity theorem of the characteristic function and the similar expansion method, the logarithmic form of likelihood ratio statistics is obtained from the normal distribution. The numerical simulation shows that the normal approximation method (HLRT) proposed in this paper is as good as the more accurate high dimensional asymptotic expansion method (AHAE), and in the process of increasing the dimension p, Both of them are more accurate than the chi-square approximation method (Lawley).
【学位授予单位】:河南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O212.1
【相似文献】
相关期刊论文 前10条
1 宋立新,赵力;两个总体相等的广义似然比检验[J];大学数学;2005年02期
2 刘瑞银;郝立丽;郝立柱;;利用似然比检验进行选择和聚类[J];黑龙江大学自然科学学报;2010年02期
3 夏常弟;李治;;动态系统故障诊断中基于瞬间跳变的似然比方法[J];西南交通大学学报;1993年05期
4 唐年胜;均匀样本中多个异常值的似然比检验[J];云南大学学报(自然科学版);1998年S2期
5 陈颖;;正交饱和设计中广义似然比检验的势函数(英文)[J];华东师范大学学报(自然科学版);2005年Z1期
6 陈彤生;李绍滋;郭锋;周昌乐;;基于概率积分变换的似然比检验的预测误差推理方法[J];厦门大学学报(自然科学版);2010年05期
7 陈宇明;陈桂景;;混合总体中广义似然比检验研究的进展(英文)[J];安徽大学学报(自然科学版);2010年06期
8 苏连塔;单边的广义似然比检验及其优良性[J];泉州师范学院学报;2001年04期
9 勾建伟;王金德;;基于似然比的多步多重比较检验(英文)[J];南京大学学报数学半年刊;2008年02期
10 姚琦伟;;越界概率与序贯似然比检验简介[J];应用数学;1989年01期
相关博士学位论文 前3条
1 姜丹丹;大维随机矩阵谱理论在多元统计分析中的应用[D];东北师范大学;2010年
2 施三支;部分线性模型中的广义似然比检验[D];吉林大学;2007年
3 卢锦;基于粒子滤波的微弱雷达目标检测方法[D];西安电子科技大学;2014年
相关硕士学位论文 前10条
1 仪琳琪;关于高维统计模型的似然比检验[D];河南大学;2017年
2 李滨;基于似然比检验的方差控制图[D];辽宁大学;2015年
3 贺昕;基于加权似然比检验的方差控制图[D];辽宁大学;2015年
4 肖南南;两种高维统计模型的似然比检验[D];河南大学;2016年
5 黄梅清;多参数总体一致性的似然比检验[D];广西师范大学;2017年
6 吴荣火;多个总体一致性的经验似然比检验[D];广西师范大学;2017年
7 范杰;基于似然比检验与小波分析的信号检测[D];山东大学;2012年
8 赵明;非标准条件下多水平模型的似然比检验[D];华中科技大学;2010年
9 胡书丽;高维似然比检验[D];华中师范大学;2014年
10 贺飞燕;各种似然中结点问题的研究[D];山东大学;2007年
,本文编号:2365385
本文链接:https://www.wllwen.com/kejilunwen/yysx/2365385.html