基于主成分分析的多元分段模型预测集成电路晶圆良率的应用
[Abstract]:With the introduction of the National Integrated Circuit Industry Development Program by the Chinese government, the integrated circuit manufacturing industry has flourished in China. In China, the manufacturing of integrated circuits is mainly in the form of contract manufacturing, so the key to the development and survival of the industry lies in the control and improvement of the yield of integrated circuit chips. In the research of integrated circuit yield prediction model, some scholars have put forward a variety of yield models since the 1960s, and the early research mainly focused on finding the relationship between yield and on-line defects. As the process improves, the design becomes more difficult, and the yield prediction is expected to be more accurate. In this paper, we propose two models of yield loss. The first type of yield loss mode, the loss of yield caused by line defects. The second type of yield loss mode, chip process design defects caused by yield loss. We use the electrical test parameters as independent variables and use the statistical model to accurately predict the loss of yield. By establishing multivariate piecewise functions of two kinds of yield patterns, we try to reduce repeated information by principal component analysis (PCA), find suitable segmental points by using decision tree method, and establish Logistic regression models for segmented parts respectively. According to the results of model analysis, it is found that the yield prediction model improves the error greatly. This multivariate piecewise model also explains the coexistence of two yield loss models. Based on this method, a set of standard flow can be established for the construction of statistical model, and the standard can be automated by computer program. Easy to use this tool, timely detection of production anomalies, reduce losses.
【学位授予单位】:华东师范大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O212.1
【相似文献】
相关期刊论文 前10条
1 吴海建;主成分分析的基本思想及应用实例[J];河南省情与统计;2003年04期
2 宋涛;唐德善;;基于灰色数列预测和主成分分析的国债风险仿真模型[J];统计与决策;2006年03期
3 张立华;金浩;邢会;张英民;;河北省经济可持续发展的全局主成分分析[J];河北工业大学学报;2006年02期
4 林海明;;主成分分析与初始因子分析的异同——兼与卢纹岱《SPSS for Windows统计分析》商榷[J];统计与决策;2006年08期
5 徐雅静;汪远征;;主成分分析应用方法的改进[J];数学的实践与认识;2006年06期
6 赵晓翠;王来生;;基于主成分分析和支持向量机的商业银行信贷风险评估[J];统计与决策;2006年13期
7 李建华;顾穗珊;藏晶;;基于主成分分析的高新技术成果转化的聚类分析[J];工业技术经济;2006年07期
8 王建民;王传旭;杨力;余忠林;王运祥;;基于主成分分析模型的煤矿企业员工满意度实证研究[J];安徽理工大学学报(社会科学版);2007年02期
9 王斌会;;稳健主成分分析方法研究及其在经济管理中的应用[J];统计研究;2007年08期
10 李振红;宋述刚;余运君;;湖北农产品指标的主成分分析[J];太原师范学院学报(自然科学版);2008年04期
相关会议论文 前10条
1 么彩莲;魏宁;;关于主成分分析的改进方法探讨[A];中国现场统计研究会第12届学术年会论文集[C];2005年
2 陈明星;缪柏其;靳韬;;利率影响因素的主成分分析与因子分析[A];中国现场统计研究会第12届学术年会论文集[C];2005年
3 孙晓东;胡劲松;焦s,
本文编号:2380155
本文链接:https://www.wllwen.com/kejilunwen/yysx/2380155.html