张量余单子的余半单性与余辫子结构
发布时间:2018-12-16 09:34
【摘要】:本文研究了张量余单子的余半单性和余表示范畴,给出了其余半单性和余可裂性的等价性定理.并证明了其余表示范畴是辫子范畴当且仅当该张量余单子是余辫子的.作为应用研究了张量型Hom-双代教的Hom-余模范畴的半单性和辫子结构.
[Abstract]:In this paper, we study the category of cosemisimple and corepresentation of Zhang Liang cosimple, and give the equivalence theorems of other semi-simple and cosplitting. It is proved that the other representation categories are braided categories if and only if the remainder of Zhang Liang's list is cobraided. As an application, the semi-simple and braided structure of the category of Hom- comodules taught by Zhang Liang type Hom- bigenerational is studied.
【作者单位】: 曲阜师范大学数学科学学院;南京理工大学理学院;
【基金】:国家自然科学基金(No.11371088) 山东省自然科学基金(No.ZR2016AQ03) 国家专项基金数学天元基金(No.11626138,No.11626139) 曲阜师范大学科技计划(No.xkj201514)
【分类号】:O154.1
,
本文编号:2382138
[Abstract]:In this paper, we study the category of cosemisimple and corepresentation of Zhang Liang cosimple, and give the equivalence theorems of other semi-simple and cosplitting. It is proved that the other representation categories are braided categories if and only if the remainder of Zhang Liang's list is cobraided. As an application, the semi-simple and braided structure of the category of Hom- comodules taught by Zhang Liang type Hom- bigenerational is studied.
【作者单位】: 曲阜师范大学数学科学学院;南京理工大学理学院;
【基金】:国家自然科学基金(No.11371088) 山东省自然科学基金(No.ZR2016AQ03) 国家专项基金数学天元基金(No.11626138,No.11626139) 曲阜师范大学科技计划(No.xkj201514)
【分类号】:O154.1
,
本文编号:2382138
本文链接:https://www.wllwen.com/kejilunwen/yysx/2382138.html