种群竞争系统分形动力学与控制
[Abstract]:The model of population growth of graduate students is of great significance to the development of human society. It has important applications in controlling population, allocating social resources, monitoring and improving ecological environment, protecting species and developing breeding industry. In recent years, the biological mathematics has been continuously developed, and the biological mathematical model has been well used. In the study of population, the most important question is whether the population has a positive equilibrium state and whether the equilibrium state can be kept stable. In mathematics, population equilibrium is about the stability of the solution of population competition model. In this paper, the Lotka-Volterra competition model, the continuous population competition model and the population competition model in the complex number domain are analyzed respectively. Among them, Lotka-Volterra population competition model laid the foundation of competition model. In this paper, the idea and method of Julia set in fractal geometry are first applied to the Lotka-Volterra population competition model, and the Julia set of the competition model is established, and the feedback control method is used to control it, and the synchronization of the competition model under different parameters is considered. Synchronizes one of the Julia sets to the other Julia set. Secondly, the continuous population competition model is analyzed, the Julia set of the competition model is discretized, the feedback control method and the optimal control method are used to control it, and the fractal box dimension corresponding to each Julia set is calculated. The complexity of the Julia set and the domain of attraction is characterized by the value of fractal box dimension. The ideas and methods of Julia set are considered in the real system, but the Julia set itself is defined in the complex number field, so the Julia set is extended to the complex system population competition model at the end of this paper. The population competition model is extended to the complex number domain, and the fractal Julia set is applied to the discrete population competition model. The stability of the system is judged by using the Jury criterion, and the Julia set of the complex population competition model is established. The effect of the initial population number on the model is considered. The model Julia set is controlled reasonably by feedback control and tracking control, and in the actual ecosystem, the artificial disturbance is added to the population quantity to protect the biological population and maintain the ecological balance. For convenience, the scope of this paper is limited to the competitive relationship between two species.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O175;O189
【相似文献】
相关期刊论文 前10条
1 陈希;;三种群竞争系统的稳定性[J];福建教育学院学报;2012年01期
2 张昌波,,俞元洪;两种群竞争系统持续生存的条件[J];高校应用数学学报A辑(中文版);1994年03期
3 赵春喜;;基于阻滞增长模型的三种群竞争模型[J];科技资讯;2008年34期
4 李晓康;;两种群竞争系统的稳定性及其数值仿真[J];三峡大学学报(自然科学版);2012年04期
5 吴爱华;王婷;张建勋;;环境噪声对具有捕获的种群竞争系统的影响[J];宁波大学学报(理工版);2009年04期
6 王瑞平;;迁移在一类二种群竞争模型中引起的分岔[J];河南大学学报(自然科学版);2013年03期
7 王拉娣,董雨滋;一类两种群竞争系统的定性分析[J];工程数学学报;1993年01期
8 胡广平;;两种群竞争模型的定性分析[J];高等数学研究;2008年01期
9 杨霞;赵珂;;一类两种群竞争离散系统的持久性[J];兵团教育学院学报;2009年02期
10 董雨滋;孙凤亭;;一类两种群竞争系统生态模型的研究[J];山西大学学报(自然科学版);1992年01期
相关硕士学位论文 前8条
1 陈淑庭;两类种群竞争模型的研究[D];广州大学;2016年
2 张棉棉;种群竞争系统分形动力学与控制[D];山东大学;2017年
3 张雅轩;带有时滞的种群竞争模型的解展开[D];天津大学;2008年
4 王巍;两类具有年龄结构的n种群竞争系统的最优输入率控制[D];天津师范大学;2010年
5 陈广业;离散自治两种群竞争与捕食模型的研究[D];新疆大学;2011年
6 张志明;具有阶段结构离散Ricker型种群竞争模型的动力学研究[D];郑州大学;2012年
7 王治民;一类具有时滞的种群相互竞争系统的稳定性区域的划分[D];长春工业大学;2014年
8 王倩;季节交替对两竞争物种模型的动态行为影响分析[D];陕西师范大学;2013年
本文编号:2393047
本文链接:https://www.wllwen.com/kejilunwen/yysx/2393047.html