生物动力系统的稳定性和分岔分析
[Abstract]:Dynamic systems are an important part of nonlinear disciplines. Nonlinear problems exist in many disciplines and fields of life, such as mathematics, physics, biology, medicine, engineering. Mechanics and economics can be explained by nonlinear dynamic systems. In particular, biological mathematics as an interdisciplinary subject of biology and mathematics, has been rapid development in recent years. In order to establish a practical mathematical model, many factors need to be considered, such as time, space, time delay, randomness, pulse, stage and so on. In this paper, the dynamic behaviors of discrete infectious disease model, prey predator model with time delay and stochastic discrete predator model are studied. The main contents are as follows: 1. This paper first describes the development, purpose and significance of biodynamic system at home and abroad, then briefly describes some basic definitions and theorems that need to be used in this paper, and finally introduces the work done in this paper. 2. The dynamic behavior of a class of discrete infectious disease model (SI) systems is analyzed. Firstly, according to the characteristic root of the characteristic equation, the stability condition of the fixed point is obtained. Secondly, according to the central popular theorem and the bifurcation theory, the condition of the double periodic bifurcation and the Neimark-Sacker bifurcation of the system at the fixed point is obtained. Finally, the numerical simulation verifies the correctness of the conclusion. 3. The dynamic behavior of predator-prey model with two delays is analyzed. Firstly, the existence of Hopf bifurcation of the system at the equilibrium point is judged according to the distribution of the characteristic root, secondly, the direction of the Hopf bifurcation and the periodic solution of the system are analyzed by using the normative theory of functional differential equation and the central popular theorem. Finally, numerical simulation verifies the correctness of the theory. 4. The asymptotic stability and Hopf bifurcation of discrete systems with stochastic lag predator-prey model are analyzed. Firstly, the stochastic discrete system is transformed into a deterministic system by orthogonal polynomial approximation. Secondly, according to the Hopf bifurcation theory, the critical value of Hopf bifurcation for the stochastic system is obtained and the central popular theorem is analyzed. Finally, the numerical simulation shows the correctness.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O19
【参考文献】
相关期刊论文 前10条
1 赵爱民;李文娟;;一类离散SIRS传染病模型的持久性[J];山西大学学报(自然科学版);2016年01期
2 王颖;滕志东;;一类离散SIRS传染病模型的Lyapunov函数[J];新疆大学学报(自然科学版);2014年03期
3 宋燕;张宇;刘薇;;一类具有标准发生率SIR模型的稳定性分析及控制[J];渤海大学学报(自然科学版);2013年02期
4 李浩;滕志东;王蕾;;具有时滞和非线性发生率的离散SIRS传染病模型的持久性[J];北华大学学报(自然科学版);2013年03期
5 吴亭;;一类SIR传染病离散模型的持久性与稳定性[J];科技通报;2011年06期
6 田晓红;徐瑞;;一类具时滞和阶段结构的捕食模型的稳定性与Hopf分支[J];高校应用数学学报A辑;2010年03期
7 ;HOPF BIFURCATION ANALYSIS IN A 4D-HYPERCHAOTIC SYSTEM[J];Journal of Systems Science & Complexity;2010年04期
8 周玲丽;孙光辉;李爱芹;;具有潜伏期的离散SEIR模型的稳定性[J];数学的实践与认识;2010年07期
9 孟新柱;陈兰荪;宋治涛;;一类新的含有垂直传染与脉冲免疫的时滞SEIR传染病模型的全局动力学行为[J];应用数学和力学;2007年09期
10 王洪坡;李杰;张锟;;速度时滞反馈控制下磁浮系统的稳定性与Hopf分岔(英文)[J];自动化学报;2007年08期
相关博士学位论文 前1条
1 袁利国;基于Logistic模型的几类系统的动力学研究及其参数估计[D];华南理工大学;2012年
相关硕士学位论文 前4条
1 邓田;一类生物动力系统的稳定性与Hopf分岔研究[D];兰州交通大学;2016年
2 董端;一类随机参数离散系统的动力学行为与同步研究[D];北方民族大学;2014年
3 周敏;两类离散生物数学模型的稳定性与分岔分析[D];中南大学;2012年
4 姜晓伟;两类非线性离散动力系统的稳定性与分岔分析[D];中南大学;2008年
,本文编号:2412390
本文链接:https://www.wllwen.com/kejilunwen/yysx/2412390.html