生物模型的稳定性态研究
[Abstract]:Bio-mathematics is a relatively independent and relatively complete subject, which plays a great role in the development of modern science and technology. It is mainly life science, public health, medicine, biology and agronomy and other disciplines and mathematics to form a cross-discipline. In studying the complexity of ecological relationship in nature, people often study it by establishing mathematical model, which is a cross-discipline of mathematics and biology-bio-mathematics. As an important branch of bio-mathematics, bio-dynamic system mainly uses the knowledge of dynamics to study the established bio-mathematics modeling. The mathematical results can be used to explain the existing phenomena in the biological world and predict what may happen in the biological world in the future. In this way, people can choose a more appropriate way of life, so that man and nature can live in greater harmony. In the first part of this paper, the research background and research status of biodynamics and population dynamics are studied. In order to facilitate our research, some basic terms and theorems of dynamical systems are introduced. The second part of this paper mainly introduces several classical population dynamics models: Logistic model, Lotka-Volterra model and Leslie-Gower model. Finally, the dynamic behavior of three kinds of functional response functions with density or non-density constraints is introduced, and the stability at the equilibrium point and the conditions for the occurrence of limit cycles are also introduced. In the third part of this paper, we mainly study the qualitative analysis of a class of Volterra models with constant retention rate. This kind of Volterra model with constant storage rate has at least two equilibrium points. By using qualitative theory of plane system and normal form theory, it is found that they can be stable nodes, unstable nodes and saddle points under different parameters. Weak center, etc. By using the normal form theory of Hopf bifurcation and the calculation of the first Lyapunov coefficient, the supercritical Hopf bifurcation is obtained near the weak center of the system, and the unique stable limit cycle is subcharged from the equilibrium point. In this paper, the dynamic analysis of the Volterra model with constant storage rate is given: when npna21) 1 (0,) 1 (010npaa), the internal equilibrium point A is the stable node of the system. If n is regarded as the rarefaction rate of the system, then for any given rarity rate n, when the prey storage rate p is large enough to make npn2) 1 (greater than the ratio of the birth rate of the prey to the death rate of the predator, This biological system can coexist for a long time; When) 133 (1) (nnpnnanp212 and) n (paak 110), the system costs a unique stable limit cycle near the equilibrium point A, which indicates that the biological system coexists in the form of stable periodic solutions for a long time.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O175
【相似文献】
相关期刊论文 前10条
1 郑士达;王绍南;;怎样制做生物模型[J];生物学通报;1954年10期
2 王行;;介绍一种用草纸和粘土制作生物模型的方法[J];生物学通报;1958年06期
3 沈洪法;;生物、生理模型鉴定会在南京召开[J];生物学通报;1988年01期
4 张海亮;张刚;;一类生物模型正解的爆破集[J];山西大学学报(自然科学版);2006年03期
5 倪文林;徐本龙;;反应-扩散-趋向生物模型中的集中现象[J];上海师范大学学报(自然科学版);2012年03期
6 魏明彬;一个三种群生物模型的定性性质[J];四川教育学院学报;1996年02期
7 张世强;非线性生物模型回归参数计算的一个新方法及应用[J];重庆医科大学学报;2003年06期
8 郭昌洪;房少梅;王霞;;一类趋化性生物模型的有限差分[J];华南农业大学学报;2009年03期
9 徐道义;具有时滞的生物模型的全局稳定性分析[J];四川师范大学学报(自然科学版);1994年05期
10 王晓雪;栗永安;;一类带有庇护区的单种群生物模型的动力学分析[J];齐齐哈尔大学学报(自然科学版);2011年02期
相关博士学位论文 前3条
1 王艳娥;两类生物模型的定性分析及数值模拟[D];陕西师范大学;2011年
2 唐谦;混沌理论在生物模型中的若干应用研究[D];大连理工大学;2014年
3 朱玲;几类具有Logistic增长的随机生物模型性质的研究[D];上海师范大学;2015年
相关硕士学位论文 前10条
1 刘岩岩;生物模型的稳定性态研究[D];重庆大学;2015年
2 倪文林;反应—扩散—趋向生物模型中的集中现象[D];上海师范大学;2012年
3 王立杰;生物模型中的一些基本模块及其稳定性[D];苏州大学;2012年
4 郑兆岳;几类生物模型的动力学研究[D];安徽大学;2012年
5 颜美平;高中生物模型构建教学的策略研究[D];鲁东大学;2014年
6 李海燕;生物模型在课程资源开发方面的应用价值研究[D];东北师范大学;2009年
7 路杰;几类脉冲生物模型的动力学研究[D];安徽大学;2012年
8 韩柱栋;两类生物模型解的稳定性和周期性[D];湖南师范大学;2012年
9 程丽丽;新课程高中生物模型教学的现状调查和实践研究[D];天津师范大学;2013年
10 吕浩;初中生物模型教学初探[D];内蒙古师范大学;2007年
,本文编号:2434464
本文链接:https://www.wllwen.com/kejilunwen/yysx/2434464.html