单调回复关系的脱钉力
发布时间:2019-03-13 21:36
【摘要】:单调回复关系决定了高维柱面上的一类动力系统.这类动力系统可视为二维柱面上单调扭转映射的推广.单调回复关系的解又对应了Frenkel-Kontoroval(F-K)模型的平衡点.Aubry-Mather理论指出:对任意的ω∈R,存在单调回复关系的以ω为旋转数的Birkhoff最小解.所有以ω为旋转数的Birkhoff最小解能否构成叶状结构的问题类似于在单调扭转映射中,是否存在以ω为旋转数的不变圆周.本文中我们给出最小叶状结构存在性的判断准则,并讨论此准则关于ω的连续性.依赖于旋转数ω的脱钉力Fd(ω)是使得F-K模型存在Birkhoff平衡点时粒子所受外力的临界值.当外力大于此临界值时,系统不存在以ω为旋转数的Birkhoff平衡点,从而是滑动的.我们将证明,当ω是无理数时,以ω为旋转数的最小能量构型组成的集合构成叶状结构当且仅当Fd(ω)=0.若ω=p/q为有理数,则Fd(p/q)=0当且仅当(p,q)-周期的Birkhoff最小解组成的集合形成叶状结构.进一步,我们将证明,Fd(ω)在无理点处连续,在丢番图点处H?lder连续.最后,我们将证明,脱钉力对局部势能函数具有连续依赖性.由此,我们可以得到,所有不能生成叶状结构的势能函数是C2-拓扑下的开集.
[Abstract]:The monotone recovery relation determines a class of dynamic systems on the high-dimensional cylindrical surface. This kind of dynamic system can be regarded as a generalization of monotone torsion mapping on a two-dimensional cylinder. The solution of monotone recovery relation corresponds to the equilibrium point of Frenkel-Kontoroval model. Aubry-Mather theory points out that for any 蠅 鈭,
本文编号:2439732
[Abstract]:The monotone recovery relation determines a class of dynamic systems on the high-dimensional cylindrical surface. This kind of dynamic system can be regarded as a generalization of monotone torsion mapping on a two-dimensional cylinder. The solution of monotone recovery relation corresponds to the equilibrium point of Frenkel-Kontoroval model. Aubry-Mather theory points out that for any 蠅 鈭,
本文编号:2439732
本文链接:https://www.wllwen.com/kejilunwen/yysx/2439732.html