广义线性模型中的参数估计及变量选择方法研究
[Abstract]:Model selection is one of the most important problems in statistical analysis. How to make the model more accurate is the most important research of all scholars. When there is a polycollinearity problem in the model, how to solve this problem is the key in the present research. This paper analyzes this problem in generalized linear model in two cases and puts forward how to deal with it in all kinds of cases. In the first case, when every variable we choose in the model is indispensable and there are some multicollinearity problems between these variables, we usually choose the ridge estimation method. Because ridge estimation not only can select all the variables, but also carries on some compression penalty to the model, which can solve the multi-collinearity problem. However, because ridge estimation contains ridge parameters, the selection of ridge parameters directly affects the accuracy of the model. So this paper summarizes the methods of ridge parameter estimation in general linear model and generalized linear model, and proposes a new ridge parameter estimation method, and applies these methods to Logistic ridge regression model. Carry out analysis. Monte Carlo simulation is used to compare and analyze the mean square error of (MSE), parameters and the standard deviation of parameters (SD). The new method of parameter estimation in Logistic regression model has not only a relatively small MSE,. And it is one of the most stable methods of parameter estimation, so that the proposed ridge parameter estimation method is relatively optimal. The second case is that when the model is a large model that contains some useless variables to the model, the variables in the model need to be screened, and the regression coefficients of some explanatory variables are compressed to zero by compression punishment. And then achieve the purpose of variable selection. In this paper, some classical variable selection methods, LASSO,SCAD,Elastic Net and MCP, are reviewed. And as pointed out in Breheny and Huang (2011), under the general linear regression model and Logistic regression model, MCP is relatively superior to LASSO and SCAD,. So this paper applies these four variable selection methods to Poisson regression model and carries out simulation experiments under different circumstances. When the variables are relatively independent, it is obtained that MCP can accurately find out the variables whose coefficients are not zero in the explanatory variables, and at the same time, the other unrelated variables are the least. When there is a certain correlation between variables, MCP is also the most accurate selection method to find out the required variables; when there is a certain group effect between variables, the relative effect of MCP is also very ideal. Therefore, we get the MCP variable selection method, which is better than the LASSO,SCAD and Elastic Net variable selection method.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O212
【相似文献】
相关期刊论文 前10条
1 杨丽霞;魏立力;;基于粗糙集方法的有序尺度变量选择[J];宁夏大学学报(自然科学版);2009年02期
2 赵宇;黄思明;;带有变量选择过程的分类模型误差分析[J];数学的实践与认识;2010年17期
3 樊亚莉;徐群芳;;稳健的变量选择方法及其应用[J];上海理工大学学报;2013年03期
4 陶靖轩;多元分析中的变量选择问题研究[J];中国计量学院学报;2001年01期
5 李树军,纪宏金;对应聚类分析与变量选择[J];地球物理学进展;2005年03期
6 陈黎明;赵永红;;转换函数未知时转换模型的变量选择[J];四川大学学报(自然科学版);2011年05期
7 刘民千,张润楚;超饱和设计的变量选择[J];南开大学学报(自然科学版);2000年03期
8 王进;;聚类分析中的距离与变量选择[J];山西财经大学学报;2007年S1期
9 张波;方国斌;;高维面板数据降维与变量选择方法研究[J];统计与信息论坛;2012年06期
10 高仁祥,张世英,刘豹;基于神经网络的变量选择方法[J];系统工程学报;1998年02期
相关会议论文 前6条
1 张俊华;方伟武;;调查表分析中变量选择的一些方法(英文)[A];中国运筹学会第六届学术交流会论文集(下卷)[C];2000年
2 李洪东;梁逸曾;;高维数据变量选择新方法研究[A];中国化学会第27届学术年会第15分会场摘要集[C];2010年
3 李慷;席裕庚;;复杂过程系统中操作变量选择与定位的方法研究[A];1993年控制理论及其应用年会论文集[C];1993年
4 云永欢;王为婷;梁逸曾;;迭代的保留有信息变量来筛选最佳变量子集的一种多元校正变量选择方法[A];中国化学会第29届学术年会摘要集——第19分会:化学信息学与化学计量学[C];2014年
5 徐登;范伟;梁逸曾;;紫外光谱结合变量选择和偏最小二乘回归同时测定水中重金属镉、锌、钴[A];中国化学会第29届学术年会摘要集——第19分会:化学信息学与化学计量学[C];2014年
6 梁逸曾;李洪东;许青松;曹东升;张志敏;;灰色化学建模与模型集群分析——兼论过拟合、稳健估计、变量选择与模型评价[A];中国化学会第27届学术年会第15分会场摘要集[C];2010年
相关博士学位论文 前10条
1 王大荣;分散度量模型中的变量选择[D];北京工业大学;2009年
2 王明秋;高维数据下若干回归模型的变量选择问题研究[D];大连理工大学;2012年
3 刘吉彩;生存数据统计模型的变量选择方法[D];华东师范大学;2014年
4 樊亚莉;稳健变量选择方法的若干问题研究[D];复旦大学;2013年
5 唐凯临;变量选择和变换的新方法研究[D];同济大学;2008年
6 董莹;高维共线性统计模型的参数估计与变量选择[D];大连理工大学;2014年
7 叶飞;相对误差准则下的估计理论和变量选择方法的研究[D];清华大学;2013年
8 袁晶;贝叶斯方法在变量选择问题中的应用[D];山东大学;2013年
9 王树云;基于Bayes方法和图限制下正规化方法的变量选择问题及其在基因组数据中的应用[D];山东大学;2010年
10 姬永刚;分位数回归中的贝叶斯变量选择[D];东北师范大学;2012年
相关硕士学位论文 前10条
1 赵冬琦;基于变量选择的股指期货对股票市场影响的实证研究[D];兰州大学;2015年
2 程勇;多水平模型的变量选择在农户人均收入数据中的应用[D];云南财经大学;2015年
3 邓秋玲;SCAD和ADS方法在比例风险模型中的应用[D];广西大学;2015年
4 韦新星;几种变量选择方法在Cox模型中的应用[D];广西大学;2015年
5 王唯;部分线性模型的变量选择问题研究[D];湘潭大学;2015年
6 徐国盛;若干模型的分位数变量选择[D];浙江财经大学;2016年
7 郭雪梅;部分线性模型中差分估计与SCAD的比较及带有异常点的非负变量选择[D];重庆大学;2015年
8 王艳;复共线性及异方差线性模型中的参数估计与变量选择[D];重庆大学;2015年
9 杨成敏;广义线性模型中的参数估计及变量选择方法研究[D];重庆大学;2015年
10 钟冬梅;线性模型中的变量选择及股票市场实证研究[D];重庆大学;2015年
,本文编号:2444284
本文链接:https://www.wllwen.com/kejilunwen/yysx/2444284.html