两类不定方程解的讨论与Smarandache函数均值的研究
[Abstract]:The mean value problem of indefinite equation (also known as Diophantine equation) and Smarandache function is two important and active mathematical fields in number theory, and they are very rich in content. But there are still some unresolved problems that arouse the interest of many experts and scholars. In this paper, the solvability problem of two kinds of indefinite equations and the mean value problem related to Smarandache function are studied by means of elementary method and analytic method. The main results are as follows: 1. By using recursive sequence, the properties of Legendre symbol, congruence and the properties of solution of Pell equation, this paper discusses the problem of integer solution of indeterminate equation x = 3 卤a~3=Dy~2 (D > 0). It is proved that the indeterminate equation x = 3 27=37y~2 has only integer solution (x, n = 3), and that there is only integer solution (x, n = 2) of the equation x = 3 卤a~3=Dy~2 (D > 0). Y) = (- 3, 0); There are only integer solutions (x, y) = (3, 0), (30, 卤27), (4, 卤1) for the indeterminate equation x~3-27=37y~2, and the integer solution for the indeterminate equation x ~ 2 + 1331 = 2pqy~2 is only (x, y) = (3, 0), (30, 卤27), (4, 卤1). In this paper, the integer solution of the indeterminate equation (na) ~ x (nb) ~ y = (nc) ~ z is discussed by means of elementary method. It is proved that the equation (na) ~ x (nb) ~ y = (nc) ~ z only has a positive integer solution (x, y, z) = (2,2,2,2,2,2,2,2,2,2,2,2,2) when a ~ x (nb) ~ y = (nc) ~ z. 2) 3. In this paper, the mean value distribution of Smarandache Ceil function and prime factor product function U (n) is studied by means of analytic method, and an interesting asymptotic formula .4 is given. In this paper, the mean value of Smarandache power function SP (n) is studied by means of elementary method and analytic method, that is, the composite mean of Smarandache power function SP (n) and number theory function R (n) are obtained on the sequence of simple numbers.
【学位授予单位】:延安大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O156
【参考文献】
相关期刊论文 前10条
1 杜先存;;关于Diophantine方程x~3±1=6pqy~2的整数解[J];东北师大学报(自然科学版);2015年04期
2 冯蕾;赵西卿;刘建;袁秀芳;;关于Diophantine方程x~3+1=3pqy~2[J];贵州大学学报(自然科学版);2015年05期
3 李润琪;;丢番图方程x~3±27=14y~2的整数解[J];唐山师范学院学报;2015年05期
4 普粉丽;张汝美;杨吉英;;Diophantine方程x~3+5~3=2pqy~2的整数解[J];湖北民族学院学报(自然科学版);2015年03期
5 李润琪;;不定方程x~3-125=2pqy~2的整数解研究[J];湖北民族学院学报(自然科学版);2015年03期
6 吴成晶;;Smarandache Ceil函数的均值[J];纺织高校基础科学学报;2014年04期
7 陈红红;;对不定方程x~3±27=91y~2整数解的讨论[J];内蒙古农业大学学报(自然科学版);2014年05期
8 杜先存;刘玉凤;管训贵;;关于丢番图方程x~3±5~3=3py~2[J];沈阳大学学报(自然科学版);2014年01期
9 唐刚;;关于丢番图方程(45n)~x+(28n)~y=(53n)~z的解[J];西南民族大学学报(自然科学版);2014年01期
10 廖军;;关于丢番图方x~3-5~3=Dy~2的整数解的研究[J];西南民族大学学报(自然科学版);2013年06期
相关硕士学位论文 前2条
1 马娅锋;关于Smarandache函数的几个问题[D];延安大学;2016年
2 袁泉;一些数论函数的推广及均值问题[D];西北大学;2013年
,本文编号:2449154
本文链接:https://www.wllwen.com/kejilunwen/yysx/2449154.html