当前位置:主页 > 科技论文 > 数学论文 >

一类复对称线性系统的参数化PMHSS迭代方法

发布时间:2019-04-11 10:08
【摘要】:基于预处理修正的Hermitian和skew-Heimitian分裂(PMHSS)迭代方法和交替方向的PMHSS(ADPMHSS)迭代方法的思想,本文提出了一种新的迭代方法来求解一类复对称线性系统,即参数化PMHSS(P2MHSS)迭代方法.在本文中,我们不仅从预处理矩阵的角度给出了 P2MHSS迭代方法的参数选取方法和计算公式,还分析了该方法的收敛性质,并证明了其在一定条件下对任意的初始向量都会收敛到该线性系统的精确解.最后,我们用数值算例验证了 P2MHSS迭代方法的可行性和有效性.
[Abstract]:In this paper, a new iterative method is proposed to solve a class of complex symmetric linear systems, i.e., the parametric PMHSS (P2MHSS) iterative method, based on the pre-processing modified Hermitian and the skew-Heimitian splitting (PMHSS) iterative method and the alternating direction PMHSS (ADPMHSS) iterative method. In this paper, we not only give the parameter selection method and calculation formula of the P2MHSS iterative method from the angle of the pre-processing matrix, and also analyze the convergence property of the method, and prove that any initial vector will converge to the exact solution of the linear system under certain conditions. Finally, we use a numerical example to verify the feasibility and effectiveness of the P2MHSS iterative method.
【学位授予单位】:兰州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O241.6

【参考文献】

相关期刊论文 前2条

1 Michael K.Ng;Nam Kiu Tsing;;Spectral Analysis for HSS Preconditioners[J];Numerical Mathematics:Theory,Methods and Applications;2008年01期

2 马菊侠;关于矩阵迹的运算[J];陕西师范大学学报(自然科学版);2003年S1期



本文编号:2456317

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/2456317.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户322f3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com