广义方程若干算法的收敛性分析
[Abstract]:In this paper, the problem of solving generalized equations is studied. For non-smooth generalized equations, a precise and imprecise non-smooth algorithm is proposed. Under certain assumptions, the convergence of the algorithm is analyzed. In this paper, a generalized Gao Si-Newton iterative method is proposed for smooth underdefined generalized equations, and its convergence is analyzed. The main contents are divided into two chapters. In the second chapter, combined with the generalized Newton iterative method in [64] and the generalized Jacobian-based Newton iterative method in [50], the exact and imprecise algorithms for solving non-smooth generalized equations are proposed. These algorithms are obtained by using generalized Jacobian matrix instead of Frechet derivative. Under the condition that the function is semi-smooth, we give different hypotheses for the two algorithms, and prove that the semi-local convergence of the algorithm includes linear convergence, superlinear convergence, square convergence and l p-order convergence. Furthermore, while proving the local convergence result of the algorithm, the existence and uniqueness of the solution are given. Finally, the exact method is applied to variational inequality problem, and a concrete example is given to carry on the numerical experiment. The numerical results show the feasibility and convergence of the exact algorithm. In chapter 3, we consider an underdefined generalized equation where the matrix corresponding to the Frechet derivative of a function is a row full rank. In this case, the generalized Newton iteration method can not get the unique iteration point, so we consider the generalized Gao Si-Newton iteration method, that is, to find the minimum norm solution in each iteration process. For large-scale problems, the exact algorithm is difficult to solve the minimum norm solution, so we only consider the case where the matrix corresponding to the Frechet derivative of the function is a row-full rank. Because the function is smooth and we study it in the finite dimensional space, this ensures the existence of the minimum solution of the norm of the generalized equation in the iterative process, and also shows that our algorithm is well-defined. Under the condition that the Frechet derivative satisfies the classical Lipschitz condition, the Kantorovich type theorem is obtained and the local convergence result is obtained by combining the technique of the optimal function. Furthermore, the semi-local convergence and local convergence of the algorithm are proved when the function condition is weakened to satisfy the L-means Lipschitz condition. Finally, as an application, we apply the results to some special cases, such as: the Kantorovich type criterion is obtained when the function satisfies the classical Lipschitz condition; the convergence result of the function satisfies the 纬-condition and the Smale point estimation theorem of the function under the analytic condition.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O241.6
【相似文献】
相关期刊论文 前10条
1 纪云龙;正定矩阵的判定[J];吉林工学院学报(自然科学版);2000年02期
2 杨新梅,李世群;有关泛正定矩阵的一些性质[J];湘潭师范学院学报(社会科学版);2000年03期
3 杜学诚;关于广义正定矩阵的几个新结果[J];扬州职业大学学报;2001年04期
4 纪云龙;广义正定矩阵的判定[J];吉林工学院学报(自然科学版);2002年03期
5 薛有奎;正定矩阵的四个性质[J];潍坊教育学院学报;2002年04期
6 沈光星;广义正定矩阵及其性质[J];高等学校计算数学学报;2002年02期
7 路红军;一类正定矩阵的性质及其应用[J];淮阴工学院学报;2003年03期
8 李衍禧;复广义正定矩阵的若干等价特征[J];潍坊学院学报;2004年04期
9 杨仕椿,吴文权;关于广义正定矩阵的进一步推广[J];数学的实践与认识;2005年05期
10 吴世锦;M-矩阵与广义正定矩阵的关系[J];大学数学;2005年04期
相关会议论文 前1条
1 刘晓冀;涂强;;广义实正定矩阵的研究[A];数学·力学·物理学·高新技术交叉研究进展——2010(13)卷[C];2010年
相关博士学位论文 前2条
1 张艳;广义方程若干算法的收敛性分析[D];浙江大学;2016年
2 罗志坤;矩阵流形上的几何结构及优化算法[D];北京理工大学;2014年
相关硕士学位论文 前10条
1 孙文静;三类广义正定矩阵的研究[D];太原理工大学;2011年
2 王应选;实行正定矩阵的理论研究[D];西华大学;2012年
3 周双;广义正定矩阵的进一步研究[D];北京交通大学;2011年
4 黄毅;广义正定矩阵的研究[D];电子科技大学;2003年
5 黄灿;正定矩阵的性质及一些正定矩阵不等式[D];重庆大学;2013年
6 王子瑜;正定矩阵的广义几何平均不等式[D];华东师范大学;2010年
7 邹黎敏;矩阵数值特征和正定矩阵的研究[D];重庆大学;2009年
8 韩欢欢;复正定矩阵的Bergstrom型不等式[D];北京交通大学;2009年
9 刘静;正定矩阵不等式和矩阵的数值特征的研究[D];重庆大学;2012年
10 任水利;新型二次PE_k方法与二次EPE_k方法[D];西北工业大学;2003年
,本文编号:2466593
本文链接:https://www.wllwen.com/kejilunwen/yysx/2466593.html