粮食产量预测方法研究
[Abstract]:Since ancient times, the food problem has been an important issue related to the development of human society. China is a developing country with a large population and a small land. economic development not only brings wealth to the people's life, but also puts pressure on the food supply of our country. The problem of grain supply and demand is closely related to the problem of food security. The problem of food security is not only an economic problem, but also related to the long-term development of the country. Therefore, it is necessary to effectively predict the grain output of our country, so as to reasonably solve the problem of the balance of grain supply and demand. Ensure national food security. After deeply understanding the present situation of grain in China, this paper focuses on the prediction of grain output. First of all, the ARIMA model, which is commonly used in time series analysis, is improved, and the improved model and the traditional model are used to predict the yield data in different time intervals respectively. the results show that when the longer time interval is selected, When the improved model is used for prediction, the more accurate the prediction results are. Secondly, a joint dynamic prediction model is proposed. The main influencing factors of grain yield are analyzed, and then the model is constructed according to the correlation degree selection of the main factors and the yield data, and the selected influencing factors are dynamically predicted by the improved ARIMA model. Combined with multiple regression, the medium and long term dynamic prediction of grain yield is realized. Finally, considering the nonlinear characteristics of yield data and the optimization of model parameters, this paper combines the relevant contents of statistical learning theory. The application principle of least squares support vector machine and the global optimization characteristics of particle swarm optimization algorithm are analyzed and learned, and the least square support vector machine model based on particle swarm optimization is proposed. The effective combination of the two makes the prediction model not only solve faster, but also ensure the global optimization of parameter selection, and the smoothing processing is added in the data preprocessing stage, which has higher prediction accuracy than the unsmoothed processing. The experimental results show that the improved ARIMA model and the joint dynamic prediction model can effectively realize the short-term and medium-and long-term prediction of grain yield, and the prediction accuracy of the latter is higher than that of the former and the traditional grey model. The least square support vector machine model based on particle swarm optimization solves the nonlinear problem well, and the prediction accuracy is better when predicting grain yield in the short term.
【学位授予单位】:河南工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F326.11;O211.61
【参考文献】
相关期刊论文 前10条
1 杨铁军;杨娜;朱春华;张元;;一种新的基于ARIMA模型的粮食产量预测[J];河南工业大学学报(自然科学版);2015年05期
2 国家统计局重庆调查总队课题组;童泽圣;;我国粮食供求及“十三五”时期趋势预测[J];调研世界;2015年03期
3 龚珍;卜小波;吴浩;;基于PSO-SVM的混凝土抗压强度预测模型[J];混凝土;2013年12期
4 徐蓓蓓;章正国;郑新龙;何旭涛;敬强;;最小二乘支持向量机在短期风速预测中的应用概况[J];电气技术;2013年06期
5 周永生;肖玉欢;黄润生;;基于多元线性回归的广西粮食产量预测[J];南方农业学报;2011年09期
6 孙东升;梁仕莹;;我国粮食产量预测的时间序列模型与应用研究[J];农业技术经济;2010年03期
7 向昌盛;周子英;武丽娜;;粮食产量预测的支持向量机模型研究[J];湖南农业大学学报(社会科学版);2010年01期
8 郭智勇;彭亚拉;李蕊舟;杨勇;夏振芳;;我国粮食产量影响因素灰色关联度比较研究[J];安徽农业科学;2010年05期
9 姚作芳;刘兴土;杨飞;闫敏华;孙丽;鲁新蕊;;组合预测模型在东北地区粮食产量预测中的应用[J];华北农学报;2009年S2期
10 李秋芳;康国磊;李小芳;李炳军;;基于灰色关联的河南省粮食生产影响因素分析[J];安徽农业科学;2009年13期
相关博士学位论文 前1条
1 张运鹏;基于GARCH模型的金融市场风险研究[D];吉林大学;2009年
相关硕士学位论文 前10条
1 于婷;基于ARIMA模型的股价的研究[D];大连海事大学;2015年
2 陆金帅;气候因子变化对我国粮食产量的影响及关系研究[D];南京信息工程大学;2014年
3 夏丽;基于ARIMA模型及回归分析的区域用电量预测方法研究[D];南京理工大学;2013年
4 李胜利;基于灰色系统理论的湖南省粮食产量预测研究[D];长沙理工大学;2012年
5 王娜;时间序列建模预报的原理与应用[D];长春工业大学;2010年
6 王步祥;基于灰色系统理论的我国粮食产量预测研究[D];江苏大学;2009年
7 赵国顺;基于时间序列分析的股票价格趋势预测研究[D];厦门大学;2009年
8 苗开超;基于指数平滑模型的农产品价格预测研究[D];合肥工业大学;2009年
9 李涛;基于遗传神经网络的粮食产量预测方法研究[D];哈尔滨工程大学;2008年
10 y嚧豪,
本文编号:2474061
本文链接:https://www.wllwen.com/kejilunwen/yysx/2474061.html