伪双曲方程非协调H~1-Galerkin有限元超逼近分析
发布时间:2019-05-17 11:05
【摘要】:针对一类伪双曲方程,建立了其非协调H~1-Galerkin混合有限元逼近格式利用非协调带约束旋转(CNR)Q_1及零阶Raviart-Thomas(R-T)元作为逼近空间对,并借助他们的特殊性质,在半离散格式下得到了原始变量u的broken-H~1模以及流量p=%絬的H(div,Ω)模的O(h~2)阶超逼近估计.同时,构造了一个具有二阶精度的全离散格式,并得到了相关变量的O(h~2+τ~2)阶超逼近结果.最后,给出了数值算例验证理论分析的正确性.
[Abstract]:For a class of pseudo-hyperbolic equations, its nonconforming H~1-Galerkin mixed finite element approximation scheme is established by using nonconforming rotating (CNR) Q 鈮,
本文编号:2479044
[Abstract]:For a class of pseudo-hyperbolic equations, its nonconforming H~1-Galerkin mixed finite element approximation scheme is established by using nonconforming rotating (CNR) Q 鈮,
本文编号:2479044
本文链接:https://www.wllwen.com/kejilunwen/yysx/2479044.html