双曲守恒律方程的高阶半拉格朗日方法
[Abstract]:The semi-Lagrangian (Semi-Lagrangian) method is widely used to calculate the Vlasov equation and simulate the weather forecasting operation. This method effectively combines the Lagrangian method (Lagrangian) with the Euler method (Eulerian). At the same time, it has the advantages of these two methods: on the one hand, after improvement, the Semi-Lagrangian method can have high-order accuracy; On the other hand, Semi-Lagrangian method does not need to be limited by CFL condition, and can save a lot of calculation time in numerical simulation. In addition, the weighted essential non-oscillatory scheme (WENO), as a method with high order accuracy, has the property of non-oscillatory at the same time. It is precisely because the high-order Semi-Lagrangian method can not only achieve high-order accuracy, but also effectively deal with oscillations. In this paper, several higher-order Semi-Lagrangian methods are proposed for conservation law equations. The higher order accuracy and non-oscillatory properties of the method are verified by numerical simulation experiments, which further enriches the theoretical knowledge of solving conservation law equations by Semi-Lagrangian method. Firstly, a higher order Semi-Lagrangian finite volume (FV) method for one-dimensional hyperbolic conservation law equations is proposed. The fourth order RK method to the left is used to calculate the initial value problem of the feature curve, and the equivalent transformation of the function value of different time layers is carried out by using the characteristic curve. The transformed function value can be reconstructed by WENO method to increase the spatial accuracy. Because the position relationship between the initial point and the end point is changed along the trajectory of the characteristic curve, the WENO reconstruction suitable for different cases is given in this paper. Furthermore, the high precision and effective capture of discontinuity points are verified by precision detection and analysis of non-oscillatory properties. Secondly, a high-order Semi-Lagrangian finite difference (FD) method for two-dimensional hyperbolic conservation law equations is proposed. A new WENO method is constructed by using Legendre multinomial. This method has the same template and accuracy as the ordinary WENO scheme, but it does not need integral calculation to realize the whole reconstruction process, which saves the calculation time. It is more suitable to reconstruct the numerical flux which is not on the grid point in the paper. In addition, a series of numerical experiments of two-dimensional conservation law equations are given in this paper, which verify the high-order accuracy of the method and the ability to deal with intermittent points. Finally, a 5-order mapping compact Semi-Lagrangian FD method is proposed. According to the symbol of characteristic velocity, different WENO reconstruction methods are constructed and extended. Because the common nonlinear weight WENO method will reduce the accuracy near the extreme point, this paper introduces the weighting of mapping to deal with this kind of problem. In the numerical simulation, the accuracy analysis and the analysis of non-oscillatory properties are used to verify that the 5-order mapping compact Semi-Lagrangian FD method can achieve the fifth-order accuracy and maintain the ability to capture the breakpoints at the same time. In summary, based on the high-order accuracy and high resolution of the higher-order Semi-Lagrangian method in solving hyperbolic conservation law equations, the one-dimensional scalar equation, the Euler equation and the higher-order Semi-Lagrangian FV method with source term shallow water equation are proposed in this paper. The higher order Semi-Lagrangian FD method and the fifth order mapping compact Semi-Lagrangian FD method for two dimensional hyperbolic conservation law equations. The numerical simulation results show that these methods are accurate and non-oscillatory, and show the superiority of higher order Semi-Lagrangian method in calculating hyperbolic conservation law equations. at the same time, it is shown that the method proposed in this paper is suitable for solving hyperbolic conservation law equations.
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:O241.82
【相似文献】
相关期刊论文 前10条
1 陈渊文;;一类含非局部项的守恒律方程的稳定性[J];复旦学报(自然科学版);2010年04期
2 葛翔宇;蔡宏材;;关于常态情形守恒律方程组的混合问题[J];武汉工学院学报;1991年04期
3 李念英;;带松弛项的单个守恒律方程解的大时间状态估计[J];安徽大学学报(自然科学版);2008年05期
4 林祥亮;;退化的粘性守恒律方程解的收敛性估计[J];复旦学报(自然科学版);2011年06期
5 王术,王卫;粘性守恒律方程的粘性激波[J];河南大学学报(自然科学版);2001年02期
6 李念英;王维克;;带松弛项的单个守恒律方程解的时态渐近性质[J];应用数学;2006年02期
7 李祥贵,李明新;求解双曲守恒律方程的高次有限元方法[J];石油大学学报(自然科学版);2001年04期
8 李念英;李同荣;;带松弛项的守恒律方程解的逐点估计[J];滨州学院学报;2009年06期
9 徐振礼,刘儒勋,邱建贤;双曲守恒律方程的加权本质无振荡格式新进展[J];力学进展;2004年01期
10 贾博;唐玲艳;宋松和;;双曲型守恒律方程的两种高精度方法的比较研究[J];湘潭大学自然科学学报;2010年04期
相关会议论文 前3条
1 柏劲松;陈森华;李平;;多介质流体欧拉守恒与非守恒律方程组高精度数值计算[A];中国工程物理研究院科技年报(2000)[C];2000年
2 徐云;蔚喜军;;变分多尺度方法求解双曲守恒律方程[A];第五届全国青年计算物理学术交流会论文摘要[C];2008年
3 刘凯欣;王景焘;张德良;;时—空守恒元解元(CE/SE)方法简述[A];计算爆炸力学进展[C];2006年
相关博士学位论文 前6条
1 阚辉;二维Glimm型格式与高维守恒律方程解的爆破及奇性结构的研究[D];中国科学院研究生院(武汉物理与数学研究所);2016年
2 吴浪;双曲守恒律方程的高阶半拉格朗日方法[D];哈尔滨工业大学;2015年
3 曹高伟;双曲守恒律方程的弱解公式及相关问题的研究[D];中国科学院研究生院(武汉物理与数学研究所);2014年
4 郑华盛;流体力学高精度数值方法研究[D];南京航空航天大学;2005年
5 黄玲;加权本质非振荡格式和快速扫描法和在行人流模型中的应用[D];中国科学技术大学;2008年
6 耿金波;流体力学中若干模型方程解的相近程度的估计[D];复旦大学;2009年
相关硕士学位论文 前10条
1 李伟;一类二维守恒律方程的非自相似全局解的奇性结构[D];中国科学院研究生院(武汉物理与数学研究所);2016年
2 丁美玲;非齐次双曲型守恒律方程组整体解的研究[D];南京航空航天大学;2015年
3 陈渊文;一类含非局部项的守恒律方程的稳定性[D];复旦大学;2009年
4 林祥亮;退化粘性守恒律方程解的收敛性估计[D];复旦大学;2010年
5 王熠;高维双曲守恒律方程全局解的研究[D];汕头大学;2006年
6 匡杰;非齐次周期性双曲守恒律解的大时间行为[D];南京航空航天大学;2012年
7 黄春香;应用包络研究二维守恒律方程解的相互作用[D];汕头大学;2009年
8 牛海萍;高维单守恒律方程的非自相似基本波及其相互作用[D];汕头大学;2004年
9 贾博;双曲守恒律方程的两种高精度方法的比较研究[D];国防科学技术大学;2010年
10 李坤;高维守恒律方程基本波的相互作用与演化[D];汕头大学;2008年
,本文编号:2482397
本文链接:https://www.wllwen.com/kejilunwen/yysx/2482397.html