全空间中一类椭圆型方程组解的存在性
发布时间:2019-05-28 08:06
【摘要】:本文主要讨论了如下的一类椭圆型方程组:其中g是连续函数,α 1,β 1,α+β ∈ (2,2*),2* =2N/N-2(N≥3)表示临界的Sobolev指数.本文应用变分法证明了如下结论:定理若α 1,β 1, α + β ∈ (2,2*),且连续函数g满足0 δ := infRN g supRN q =: γ +∞, lim|x|→+∞q(x) = γ,那么椭圆型方程组(*)至少存在一个非平凡的非负弱解.
[Abstract]:In this paper, we mainly discuss the following class of elliptical equations: where g is a continuous function, 伪 1, 尾 1, 伪 尾 鈭,
本文编号:2486886
[Abstract]:In this paper, we mainly discuss the following class of elliptical equations: where g is a continuous function, 伪 1, 尾 1, 伪 尾 鈭,
本文编号:2486886
本文链接:https://www.wllwen.com/kejilunwen/yysx/2486886.html