二维变重量光正交码的新结果
[Abstract]:In 1989, Salehi proposed the concept of one-dimensional constant-weight optical orthogonal code (1D CWOOC), which is applied to the optical code division multiple access (OCDMA) system as a signature sequence. In order to meet the needs of a variety of quality of service (QoS), Yang introduced the concept of one-dimensional variable-weight optical orthogonal code (1D VWOOC) in 1996. With the rapid development of the society, the demand for different types of information is gradually improved. In order to expand the optical orthogonal code, Yang proposed two-dimensional constant-weight optical orthogonal code (2D CWOOC) in 1997, but it is similar to one-dimensional constant-weight optical orthogonal code. The definition of a two-dimensional variable-weight optical orthogonal code is given below. Let W = {1 _ 1,2 _ 2,... , __ r} is a positive integer set, is a positive integer array, Q = (q1, q2...). (qr) is a positive rational number array without loss of generality. A two-dimensional (u, v, a, c, q) variable weight optical orthogonal code, or (u, v, w, a, c, q)-ooc c, is a (0,1) matrix (code word) of a cluster u, v, and satisfies the following three properties: (1) the codeword weight distribution: (1) the codeword in c has a hamming weight in the set w and c is qi. | c | a code word with a weight of wi,1, i, r, i. e., the number of code words with a weight equal to wi as a percentage of the total number of codewords, and thus, r i = 1 qi = 1. (2) Periodic self-correlation: for any matrix X-C, its Hamming weight, wk, W, integer number,0, v-1, (? ) (? ) (3) Periodic cross-correlation: for any two different matrices X, Y, C, integer number,0, and v-1, (? ). The above-mentioned symbol (?) represents a modulo operation for v. If the symbol (1) = (a (2) =... = (a (r) = (a), we will (u, v, W, a, c, Q)-OOC as (u, v, W, a, c, Q)-OOC. If the ratio of (u, v, W, a, c, Q)-OOC is recorded as (u, v, W, HCO3, Q)-OOC. If Q = (a1/ b, a2/ b,... , ar/ b) and gcd (a, a2,... (ar) = 1, then Q is standard and it is clear that b = {r i = 1 ai. If W = {w}, Q = (1). Therefore, the constant weight (u, v, w,1)-OOC can be considered as (u, v, {w},1, (1))-OOC. For optical orthogonal codes, it is said to be optimal when its number of codewords reaches the maximum. However, for the best (u, v, W,1, Q)-OOC, there are some results, but for the best (u, v, W,1, Q)-OOC, we will continue to study and get the following main results. Theorem 1.1.1 Let v be a positive integer, v for each mass factor of 3 (mod 4) and p = 11, there is 1-regular and optimal (6% v, {3.4.6},1, (5/ 7.1/ 7.1/7)) There are 1-regular and optimal (5, v, {3.4.5}.1, (1/ 4.2/ 4.1/4))-OOC. Theorem 1.3 is set to v is a positive integer, v for each mass factor p-3 5 (mod 8) and p-equal to 53, there are 1-regular and optimal (6, v, {3,,4,5},1, (2/11,6/11,3/11))-OOC. The theorem 1.4 is set to a positive integer, and each of the quality factors p-5 (mod 8) and p-{29} of v are 1-regular and optimal (6, v, {3,4},1, (14/19,5/19))-OOC. The theorem 1.5 is a positive integer, and each of the qualitative factors of v is p-5 (mod 8) and p = 53, there is 1-regular and optimal (6} v, {3,4}, The structure of W,1, Q)-OOCs and the third chapter give the optimal (u, v, {3,4},1, Q)-OOCs. The fourth chapter is the summary and the further study.
【学位授予单位】:广西师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O157.4
【相似文献】
相关期刊论文 前10条
1 韦月尔;莫正芳;吴佃华;;最优变重量光正交码的构造[J];广西师范大学学报(自然科学版);2010年04期
2 杨义先;光正交码[J];电子学报;1991年01期
3 赵恒明;覃荣存;蒋婵;;两类平衡最优(v,{3,4},(1,2),1)光正交码(英文)[J];广西师范学院学报(自然科学版);2014年02期
4 丁川,王开弘;关于一类优化光正交码[J];贵州师范大学学报(自然科学版);2002年02期
5 吉建华;田晶晶;莫浩然;徐铭;;一种新的二维光正交码及其性能分析[J];中国激光;2007年05期
6 余黄生;吴佃华;;一类新的最优变重量光正交码[J];广西师范大学学报(自然科学版);2011年04期
7 刘燕;黄必昌;;最优(v,{3,4,6},1,Q)光正交码的构造[J];广西师范学院学报(自然科学版);2012年02期
8 袁宁;王小苗;;最优变重量光正交码的一些构造[J];宁波大学学报(理工版);2013年03期
9 许成谦,杨义先;几类光正交码的代数构造[J];北京邮电大学学报;1997年02期
10 许成谦,杨义先;渐近最佳二维光正交码的代数构造[J];科学通报;1997年19期
相关会议论文 前4条
1 史小菊;李琦;高军萍;王霞;;基于序列偶理论的光正交码偶构造方法研究[A];2011年全国通信安全学术会议论文集[C];2011年
2 梁毅;廖进昆;王忠;;光正交码的分析[A];四川省通信学会2003年学术年会论文集[C];2003年
3 黄河;赵泽茂;;基于光正交码构造的准循环LDPC码[A];浙江省电子学会2011学术年会论文集[C];2011年
4 王玉宝;刘黎明;;三维空/时/频光正交码(OOC)的构造[A];计算机技术与应用进展·2007——全国第18届计算机技术与应用(CACIS)学术会议论文集[C];2007年
相关博士学位论文 前3条
1 黄月梅;二维最优光正交码[D];北京交通大学;2013年
2 王立冬;最优三维光正交码的组合构造[D];北京交通大学;2015年
3 李西洋;拓扑透明MAC调度码及光正交码设计与分析[D];西南交通大学;2013年
相关硕士学位论文 前10条
1 于珊珊;光正交码偶的研究[D];燕山大学;2011年
2 董百卉;一类最优二维光正交码[D];河北师范大学;2015年
3 丁少威;光正交码在室内漫反射信道中理论研究[D];山东大学;2015年
4 代素慧;一类带约束的最优三维光正交码的组合构造[D];北京交通大学;2016年
5 邵旭彦;多长度光正交码的组合构造[D];江南大学;2017年
6 赵艳彩;一类具有最好互相关性的最优二维光正交码的组合构造[D];北京交通大学;2017年
7 杨慧君;二维变重量光正交码的进一步研究[D];广西师范大学;2017年
8 王永真;二维变重量光正交码的组合构造[D];广西师范大学;2017年
9 赵恒明;变重量光正交码的组合构造[D];广西师范大学;2010年
10 蒋静;光正交码的组合构造[D];广西师范大学;2011年
,本文编号:2487241
本文链接:https://www.wllwen.com/kejilunwen/yysx/2487241.html