单圈图斜能量的排序
[Abstract]:Graph theory is a widely used subject of mathematics, which is widely used in natural science, social science and other fields. Atlas theory is not only an important field of graph theory research, but also a very active research field. It is widely used in quantum chemistry, physics and computer science. The graph theory studies the eigenvalues and eigenvectors of the correlation matrices of graphs, such as adjacent matrices, Laplace matrices, etc., and their applications. The study of graph energy is an important application in atlas theory, and it has a very important application in theoretical chemistry. In particular, there is a close relationship between the eigenvalues of the graph and the molecular orbital energy of 蟺-electrons in conjugated hydrocarbons. For a simple undirected graph G, its energy E (G) is defined as the sum of the absolute values of all eigenvalues of the corresponding adjacent matrix. Since 1977. Since Gutman, a famous mathematical chemist, put forward this concept, many theoretical chemists and mathematicians have paid more and more attention to it. After entering the new century, the energy of the graph has been greatly developed, and many important conclusions have been discovered one after another. In addition to the energy of the adjacent matrix of the graph, the energy of other related matrices of the graph has been proposed and widely studied. For example, Laplacian energy, Signless Laplacian energy, correlation energy, distance energy, oblique energy of directional graph. Similar to the energy definition of an undirected graph, the oblique energy E (G) of the directed graph is defined as the sum of the absolute values of all the eigenvalues of the oblique adjacent matrix of the directed graph. In this paper, the ordering problem of oblique energy of directional unicycle graph and the extreme oblique energy problem of directional unicycle graph with given circumference are studied by using the coefficient comparison of characteristic Polynomials and the theorem of function zeros. The main results are as follows: (1) the order of the minimum oblique energy from the third to the ninth smallest in the directional single cycle graph is determined, and (2) the directional single cycle graph of the second small oblique energy with a given circumference is characterized.
【学位授予单位】:湖南师范大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O157.5
【相似文献】
相关期刊论文 前10条
1 侯远;常安;;具有最大度距离的单圈图(英文)[J];数学研究;2006年01期
2 王晓;段芳;;单圈图的解析(英文)[J];华东师范大学学报(自然科学版);2009年01期
3 李银奎;;单圈图毁度的一个算法[J];计算机工程与应用;2010年26期
4 聂智波;;单圈图依谱矩的排序[J];纺织高校基础科学学报;2012年04期
5 傅超,刘彦佩;图的k-单圈划分中的优化问题[J];运筹学学报;2002年02期
6 张卓;;单圈图的独立指数[J];暨南大学学报(自然科学与医学版);2006年01期
7 张卓;;具有第二大及第二小独立指数的n阶单圈图[J];暨南大学学报(自然科学版);2007年01期
8 张卓;;两类特殊单圈图的独立指数的大小关系[J];广州大学学报(自然科学版);2007年01期
9 唐镇;侯耀平;;一类单圈图的谱[J];湖南师范大学自然科学学报;2007年01期
10 宋春燕;黄琼湘;;单圈图的零度(英文)[J];运筹学学报;2009年01期
相关博士学位论文 前6条
1 王文环;具有完美匹配的图依能量的排序[D];上海大学;2008年
2 卢鹏丽;图的谱确定性研究[D];兰州理工大学;2009年
3 冶成福;拓扑指标和拉普拉斯谱理论中的若干问题[D];华中师范大学;2012年
4 谭学忠;图的谱性质的研究[D];华南师范大学;2006年
5 陈暑波;图的几类拓扑指数及相关的组合结构研究[D];中南大学;2012年
6 张光军;图的特下与度序列[D];上海交通大学;2012年
相关硕士学位论文 前10条
1 徐晓辉;关联能量的若干结果[D];集美大学;2015年
2 田凤雷;图的距离拉普拉斯和距离无符号拉普拉斯特征值的若干结果[D];中国矿业大学;2015年
3 曹千秋;关于树和单圈图离心距离和的研究[D];中国矿业大学;2015年
4 程书婷;单圈图的全控制数与零化数[D];新疆大学;2015年
5 周长寿;一些特殊图类的过度[m]-指标[D];新疆大学;2015年
6 简相国;图的无符号拉普拉斯谱和拉普拉斯谱的若干结果[D];上海大学;2015年
7 孙攀峰;单圈图、双圈图以及树的线图的PI指数[D];新疆大学;2015年
8 毛慧;给定悬挂点数的单圈图的极值斜能量[D];湖南师范大学;2015年
9 董情情;单圈图斜能量的排序[D];湖南师范大学;2015年
10 宋春燕;单圈图的零度[D];新疆大学;2008年
,本文编号:2496256
本文链接:https://www.wllwen.com/kejilunwen/yysx/2496256.html