加权Koch网络的分形与重分形性质及其Laplace特征值
发布时间:2019-06-10 12:47
【摘要】:本文主要研究Dai等人提出的加权Koch网络和Zhang等人提出的Koch网络的分形维数、重分形性质以及Laplace特征值。加权Koch网络是在Koch网络的基础上,引入一个权系数ω(0ω≤1)。当ω=1时,加权Koch网络就变为Koch网络。首先,运用数值计算,我们得到加权Koch网络的分形维数与权系数ω(0ω1)的依赖关系。我们发现,加权Koch网络的分形维数的数值解与Dai等人给出的理论解非常吻合,也即本文运用的算法适用于加权Koch网络。然后,我们得到加权Koch网络的平均质量分布τ(q)曲线和广义分形维数D(q)曲线,发现此网络具有重分形性质。且此网络的信息维数D(1)与关联维数D(2)均与ω(0ω1)成二次依赖关系。其次,Koch网络是加权Koch网络的一种特殊情况,本文的算法也适用于Koch网络。运用数值计算,我们得到Koch网络的分形维数
[Abstract]:In this paper, we mainly study the fractal dimension, multifractal properties and Laplace eigenvalues of weighted Koch networks proposed by Dai et al. And Koch networks proposed by Zhang et al. The weighted Koch network is based on the Koch network, and a weight coefficient 蠅 (0 蠅 鈮,
本文编号:2496462
[Abstract]:In this paper, we mainly study the fractal dimension, multifractal properties and Laplace eigenvalues of weighted Koch networks proposed by Dai et al. And Koch networks proposed by Zhang et al. The weighted Koch network is based on the Koch network, and a weight coefficient 蠅 (0 蠅 鈮,
本文编号:2496462
本文链接:https://www.wllwen.com/kejilunwen/yysx/2496462.html