洛伦兹空间中紧致类空超曲面:新积分公式与高阶平均曲率(英文)
发布时间:2019-06-21 02:47
【摘要】:设M是洛伦兹空间L~(n+1)中紧致无边定向类空等距浸入超曲面.首先得到一类新的积分公式.然后,通过应用这些积分公式,证明了:如果存在一个整数r(1≤r≤n-1)使得高阶平均曲率Hi0,i=1,2,…,r,而且Hr是常数,则M是全脐的.
[Abstract]:Let M be a compact and boundless space-like isometric immersion hypersurface in a Lorentz space L ~ (n 1). First of all, a new class of integral formulas is obtained. Then, by applying these integral formulas, it is proved that if there is an integer r (1 鈮,
本文编号:2503726
[Abstract]:Let M be a compact and boundless space-like isometric immersion hypersurface in a Lorentz space L ~ (n 1). First of all, a new class of integral formulas is obtained. Then, by applying these integral formulas, it is proved that if there is an integer r (1 鈮,
本文编号:2503726
本文链接:https://www.wllwen.com/kejilunwen/yysx/2503726.html