当前位置:主页 > 科技论文 > 数学论文 >

广义近似空间的拓扑分离性与紧性

发布时间:2019-08-15 06:16
【摘要】:本文对一般广义近似空间(U,R)进行了拓扑式研究,利用R-开集概念诱导了广义近似空间对应的拓扑空间,并利用诱导的拓扑空间定义了相应广义近似空间的T_0性与T_1性及拓扑紧性。证明了广义近似空间的T_0性强于T_0~a性,T_1性与T_1~a性等价;证明了广义近似空间的关系紧性强于拓扑紧性,并用反例说明了关于分离性和紧性其他不能蕴含的情形。
[Abstract]:In this paper, the topological formula of general generalized approximate space (U, R) is studied. The topological space corresponding to generalized approximate space is induced by using the concept of R-open set, and the T0 property, T1 property and topological compactness of the corresponding generalized approximate space are defined by using the induced topological space. It is proved that the T _ 0 property of the generalized approximate space is stronger than the T 鈮,

本文编号:2526810

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/2526810.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户02a7a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com