多项式代数上的微分理想
发布时间:2019-08-15 14:31
【摘要】:设k[x]是特征为零的域k上的一元多项式环.研究了k[x]上带权的非零单项式微分算子对应的微分理想的性质,利用矩阵求最大公因式的方法,确定了由一个多项式生成的微分理想作为通常意义上的理想时的生成元.
[Abstract]:Let k [x] be a univariate multinomial ring over a field k with characteristic zero. In this paper, the properties of differential ideals corresponding to weighted non-zero monomial differential operators on k [x] are studied. By using the method of finding the maximum common factor of matrix, the differential ideal generated by a polynomial is determined to be the generator of ideal in the usual sense.
【作者单位】: 重庆人文科技学院机电与信息工程学院;
【基金】:重庆人文科技学院教改项目(15CRKXJ05)
【分类号】:O155
本文编号:2527048
[Abstract]:Let k [x] be a univariate multinomial ring over a field k with characteristic zero. In this paper, the properties of differential ideals corresponding to weighted non-zero monomial differential operators on k [x] are studied. By using the method of finding the maximum common factor of matrix, the differential ideal generated by a polynomial is determined to be the generator of ideal in the usual sense.
【作者单位】: 重庆人文科技学院机电与信息工程学院;
【基金】:重庆人文科技学院教改项目(15CRKXJ05)
【分类号】:O155
【相似文献】
相关期刊论文 前1条
1 谢福鼎,张鸿庆;线性微分理想的维数[J];兰州大学学报;2003年01期
,本文编号:2527048
本文链接:https://www.wllwen.com/kejilunwen/yysx/2527048.html