当前位置:主页 > 科技论文 > 数学论文 >

变分不等式的投影算法及其在网络均衡问题中的应用

发布时间:2020-03-26 14:28
【摘要】:变分不等式问题是一类非常重要的非线性问题,被广泛应用于经济学、力学、应用科学等领域。信号处理、网络资源分配、图像处理等应用领域的一些现实问题可转化为不动点问题或者变分不等式问题。本文主要研究了求解变分不等式问题的解集与不动点问题的不动点集合的公共元素的Amijo型投影算法和惯性次梯度型投影算法。全文共分为五章:在第一章中,概述了变分不等式问题的研究背景和意义,分析了有关变分不等式的投影算法的国内外研究现状。同时,介绍了本文的主要研究内容以及论文的组织结构。在第二章中,介绍了算法的收敛性证明中所需的常用符号、定义、命题和引理。在第三章中,介绍了一种求解经典变分不等式问题的解集与不动点问题的解集的公共元素的惯性次梯度型投影算法。在变分不等式所涉及的映射是单调的、Lipschitz连续的假设条件下,通过加入混合投影步骤,得到了算法的强收敛性。同时,针对所提出的算法进行了数值实验,并给出了数值实验结果。在第四章中,在没有单调性假设条件下,提出了一种求解集值变分不等式问题的解集与不动点问题的不动点集合的公共元素的Amijo型投影算法。在映射是非空紧凸的、连续的假设条件下,证明了算法的收敛性,分析了算法的收敛率。同时,给出了数值实验结果。另外,作为应用,将所提出的算法应用于寻找Braess悖论网络的平衡状态,并给出了数值实验结果。在第五章中,总结了本文主要研究内容,分析了研究成果的创新点,并对变分不等式问题的投影算法的进一步研究进行了展望。
【图文】:

迭代次数,精度,变分不等式,次梯度


重庆邮电大学硕士学位论文 第 3 章 变分不等式及不动点问题的惯性次梯度型投影算法实验结果如图 3.1、图 3.2 和表 3.1 所示。表 3.1 例 3.1 数值实验结果 IE ISEIter. CPU Iter. CPU10 9 0.5588023 3 0.544402410-122 1.2488073 13 1.010000910-227 1.4376096 18 1.188809810-331 1.6368103 22 1.285610110-436 1.8332122 27 1.392410410-541 1.9940135 31 1.508010510-646 2.1600150 35 1.620410910-751 2.3244174 40 1.772811310-856 2.4652192 44 1.901150010-961 2.6048208 48 2.016411910-1066 2.7802200 53 2.178812310-1171 2.9124229 57 2.311212710-1275 3.0596241 61 2.4336131

精度,变分不等式,次梯度,投影算法


重庆邮电大学硕士学位论文 第 3 章 变分不等式及不动点问题的惯性次梯度型投影算法实验结果如图 3.1、图 3.2 和表 3.1 所示。表 3.1 例 3.1 数值实验结果 IE ISEIter. CPU Iter. CPU10 9 0.5588023 3 0.544402410-122 1.2488073 13 1.010000910-227 1.4376096 18 1.188809810-331 1.6368103 22 1.285610110-436 1.8332122 27 1.392410410-541 1.9940135 31 1.508010510-646 2.1600150 35 1.620410910-751 2.3244174 40 1.772811310-856 2.4652192 44 1.901150010-961 2.6048208 48 2.016411910-1066 2.7802200 53 2.178812310-1171 2.9124229 57 2.311212710-1275 3.0596241 61 2.4336131
【学位授予单位】:重庆邮电大学
【学位级别】:硕士
【学位授予年份】:2018
【分类号】:O177.91

【相似文献】

相关期刊论文 前10条

1 甘航萍;王力;何庆;徐同伟;;基于凸轮权重距离局部保持投影算法的人脸识别[J];电子科技;2017年08期

2 刘川何;;求解分裂可行问题的一种松弛投影算法[J];重庆工商大学学报(自然科学版);2016年01期

3 陈磊;段晚锁;徐辉;;基于奇异值分解的计算条件非线性最优扰动的集合投影算法[J];中国科学:地球科学;2015年03期

4 郑莲;苟清明;;解变分不等式的两种新的投影算法[J];西南师范大学学报(自然科学版);2013年08期

5 叶明露;;变分不等式的一类二次投影算法[J];应用数学学报;2012年03期

6 蒋璐璐;邵咏妮;张瑜;谈黎虹;;基于光谱技术和连续投影算法的润滑油品牌快速鉴别研究[J];光谱实验室;2010年04期

7 孙军;屈彪;;求解稀疏分裂可行问题的一种投影算法[J];数学杂志;2019年02期

8 李明强;郭田德;韩丛英;;等式约束二次规划问题的新的梯度投影算法(英文)[J];中国科学院大学学报;2018年03期

9 刘俐;李倩;何为;徐征;;一种均匀激励磁场磁感应成像的改进反投影算法[J];中国生物医学工程学报;2014年03期

10 党亚峥;薛中会;高岩;;凸可行问题的块迭代次梯度投影算法[J];河南理工大学学报(自然科学版);2012年01期

相关会议论文 前10条

1 柴云峰;黄显林;介鸣;金光明;;一种快速灰度投影算法的实现与仿真[A];第25届中国控制会议论文集(中册)[C];2006年

2 左杨眉;唐治德;;基于FPGA的自适应仿射投影算法的研究与实现[A];电工理论与新技术学术年会论文集[C];2005年

3 普雄鹰;刘伟军;李论;;基于点集曲面投影算法的自由曲面匹配[A];2009中国仪器仪表与测控技术大会论文集[C];2009年

4 李雷雷;;基于仿射投影算法的自适应递增网络分布式估计[A];2011中国电影电视技术学会影视技术文集[C];2011年

5 丁锋;杨家本;;鞅超收敛定理与投影算法的收敛性分析[A];1997中国控制与决策学术年会论文集[C];1997年

6 赵汉武;王建波;贾冲;张雄伟;;一种新的变步长仿射投影算法[A];通信理论与信号处理新进展——2005年通信理论与信号处理年会论文集[C];2005年

7 王晓白;马彩文;张娅丽;;基于链码检测的三维投影算法[A];2010振动与噪声测试峰会论文集[C];2010年

8 李佳;池荣虎;周林;;带有死区的自适应迭代学习控制方法[A];中国自动化学会控制理论专业委员会B卷[C];2011年

9 陈跃庭;冯华君;徐之海;李奇;汪小勇;;多参考点三步搜索法快速稳像算法[A];浙江省光学学会第九届学术年会暨新型光电技术青年论坛论文集[C];2005年

10 李睿凡;朱强生;郭燕慧;刘海涛;;鲁棒局部保持投影的表情识别[A];2006年首届ICT大会信息、知识、智能及其转换理论第一次高峰论坛会议论文集[C];2006年

相关博士学位论文 前10条

1 陈海滨;广义变分不等式及拟均衡问题的外梯度投影算法研究[D];曲阜师范大学;2015年

2 范永全;集员仿射投影算法研究[D];西南交通大学;2010年

3 冯贵玉;人脸与掌纹识别的子空间特征提取方法研究[D];国防科学技术大学;2007年

4 党亚峥;可行问题的迭代算法[D];上海理工大学;2012年

5 王坤;基于匹配度的流线优化问题研究[D];西南交通大学;2012年

6 王学永;变分不等式与线性约束分离优化问题的若干算法研究[D];重庆大学;2015年

7 寇喜鹏;结构变分不等式与凸优化问题的若干算法研究[D];重庆大学;2015年

8 方长杰;具有集值映射变分不等式的投影算法[D];四川师范大学;2011年

9 马国栋;非线性优化问题的QP-free及广义梯度投影算法研究[D];上海大学;2015年

10 田金超;正交混沌调幅通信机制的构建及关键技术研究[D];哈尔滨工程大学;2008年

相关硕士学位论文 前10条

1 唐南春;变分不等式一些投影算法的稳定性分析[D];西华师范大学;2019年

2 王冬年;基于凸集投影算法的地震数据重建和噪声压制研究[D];东华理工大学;2019年

3 张莉薪;变分不等式的投影算法及其在网络均衡问题中的应用[D];重庆邮电大学;2018年

4 张小娟;求解随机变分不等式的两个随机逼近投影算法[D];重庆师范大学;2019年

5 陆娇娇;基于短距投影算法的汽车盲区消除系统研究[D];华东师范大学;2019年

6 唐s,

本文编号:2601571


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/2601571.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户942f9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com