《山东理工大学》2016年硕士论文
本文关键词:基于双层位势的基本解法,由笔耕文化传播整理发布。
【摘要】:科学和工程中的许多问题可归结为偏微分方程的边值问题。除一些特殊问题外,获得其解析解是不可能的,一般只能求其数值解。在科学计算家族中,基于网格的数值方法主要有有限元法(FEM)、有限差分法(FDM)及边界元法(BEM)。基本解法(MFS)是一种简单、高精度的无网格方法,它无需对区域及其边界划分单元,具有运算精度高、收敛速度快、程序实现简单等优良特性,因此得到许多科学计算工作者的青睐。然而,传统的基本解法基于单层位势和叠加原理,在求解某些有限域问题时,虚边界位置会受到一定的限制,在求解某些无限域问题时会无解。不同于传统的基于单层位势的基本解法,本文提出了基于双层位势的基本解法,并实践于二维稳定温度场的正问题和反问题的研究中。但是,实践中作者发现,基于双层位势和叠加原理的基本解法尽管避免了传统的基本解法在求解有限域问题时遇到的问题,但在求解某些无限域问题时仍然会出问题。为此,作者进一步提出了基于双层位势和叠加原理的改进的基本解法。实践表明,改进的基本解法既避免了传统基本解法在求解有限域问题时可能遇到的问题,也适用于任何二维无限域正问题和反问题的求解。本文的具体工作是:第三、四章分别研究了二维位势正问题、反问题的基于双层位势的基本解法。第五、六章探究了二维无限域位势正问题、反问题的基于双层位势的改进的基本解法。第七章提出了平面弹性问题的改进的基本解法,并应用于二维弹性力学反问题的研究。此外,引入截断奇异值分解(TSVD)和Tikhonov正则化方法来规则化求解基本解法的病态线性系统,正则化参数通过L曲线法和GCV法确定,收到了良好的效果。不仅保证了求解精度,又大大地扩展了虚边界的选择范围。算例表明,改进的基本解法适用于任何边值问题的求解。
本文关键词:基于双层位势的基本解法,由笔耕文化传播整理发布。
,本文编号:282849
本文链接:https://www.wllwen.com/kejilunwen/yysx/282849.html