初始间断为2个同心圆周的二维Burgers方程的解
发布时间:2021-05-21 21:17
得到了一类具有2个不同半径的同心圆周线初始间断的二维Burgers方程的激波与疏散波及其相互作用的整体结构.在初始值是2个不同的常数状态假设下,利用H(H’)条件及R-H条件,分别构造出当0≤t≤(221/2)/(u+-u-),(221/2)/(u+-u-)<t≤4/(u+-u-),4/(u+-u-)<t≤8/(u+-u-),8/(u+-u-)<t≤2((26-7(21/2))1/2)-(10-7(21/2))1/2/(u+-u-),2((26-7(21/2))1/2-(10-7(2...
【文章来源】:北京工业大学学报. 2017,43(09)北大核心CSCD
【文章页数】:11 页
【文章目录】:
1 相关结论及问题的引入
2 二维基本波的求解及其相互作用
2.1 基本波
2.2 基本波的相互作用
2.3 波的相互作用
3 结论
【参考文献】:
期刊论文
[1]NEW STRUCTURES FOR NON-SELFSIMILAR SOLUTIONS OF MULTI-DIMENSIONAL CONSERVATION LAWS[J]. 杨小舟,魏涛. Acta Mathematica Scientia. 2009(05)
[2]CONVERGENCE OF AN EXPLICIT UPWIND FINITE ELEMENT METHOD TO MULTI-DIMENSIONAL CONSERVATION LAWS[J]. Jin-chao Xu (Center for Computational Mathematics and Applications and Department of Mathematics, Pennsylvania State University, U.S.A ) (School of Mathematical Sciences, Peking University, Beijing 100871, China) Lung-an Ying (School of Mathematical Scien. Journal of Computational Mathematics. 2001(01)
[3]MULTI-DIMENSIONAL RIEMANN PROBLEM OF SCALAR CONSERVATION LAW[J]. 杨小舟. Acta Mathematica Scientia. 1999(02)
[4]SOME FUNDAMENTAL CONCEPTS ABOUT SYSTEM OF TWO SPATIAL DIMENSIONAL CONSERVATION LAWS[J]. 张同,陈贵强. Acta Mathematica Scientia. 1986(04)
本文编号:3200394
【文章来源】:北京工业大学学报. 2017,43(09)北大核心CSCD
【文章页数】:11 页
【文章目录】:
1 相关结论及问题的引入
2 二维基本波的求解及其相互作用
2.1 基本波
2.2 基本波的相互作用
2.3 波的相互作用
3 结论
【参考文献】:
期刊论文
[1]NEW STRUCTURES FOR NON-SELFSIMILAR SOLUTIONS OF MULTI-DIMENSIONAL CONSERVATION LAWS[J]. 杨小舟,魏涛. Acta Mathematica Scientia. 2009(05)
[2]CONVERGENCE OF AN EXPLICIT UPWIND FINITE ELEMENT METHOD TO MULTI-DIMENSIONAL CONSERVATION LAWS[J]. Jin-chao Xu (Center for Computational Mathematics and Applications and Department of Mathematics, Pennsylvania State University, U.S.A ) (School of Mathematical Sciences, Peking University, Beijing 100871, China) Lung-an Ying (School of Mathematical Scien. Journal of Computational Mathematics. 2001(01)
[3]MULTI-DIMENSIONAL RIEMANN PROBLEM OF SCALAR CONSERVATION LAW[J]. 杨小舟. Acta Mathematica Scientia. 1999(02)
[4]SOME FUNDAMENTAL CONCEPTS ABOUT SYSTEM OF TWO SPATIAL DIMENSIONAL CONSERVATION LAWS[J]. 张同,陈贵强. Acta Mathematica Scientia. 1986(04)
本文编号:3200394
本文链接:https://www.wllwen.com/kejilunwen/yysx/3200394.html