当前位置:主页 > 科技论文 > 数学论文 >

非扩张随机控制和随机微分对策问题的极限值的表示

发布时间:2021-06-23 00:49
  很多不同的文献都对遍历的控制问题和遍历的随机控制问题中当折扣因子趋于零时候的值函数λVλ的极限值进行了研究,在此类问题的研究中,作者通过使用遍历性假设来保证当λ→0的时候λVλ一致收敛到一个常数,具体细节可以查阅以下文献:Arisawa[3],Arisawa 和 Lions[4],Artstein 和 Gaitsgory[5],Basak,Borkar 和Ghosh[11],Borkar 和 Gaitsgory[18],Buckdahn 和 Ichihara[27],Lions,Papanicolaou和 Varadhan[75],Richou[93]。另一方面,在 Buckdahn,Goreac 和 Quincampoix[23],Quincampoix 和 Renault[92],Cannarsa 和 Quincampoix[28]中作者引入了非扩张条件,不同于遍历性情形的讨论在非扩张假设下极限函数可以依赖于初始条件x。本文基于上面的研究工作,通过无穷时间区间折扣代价泛函来定义值函数Vλ,使用PDE方法,进一步讨论了... 

【文章来源】:山东大学山东省 211工程院校 985工程院校 教育部直属院校

【文章页数】:135 页

【学位级别】:博士

【文章目录】:
中文摘要
Abstract
符号说明
Notations
Chapter 1 Introduction
    1.1 Representation of asymptotic values for nonexpansive stochastic control
    1.2 Representation of limit values for nonexpansive stochastic differential games
Chapter 2 Characterisation of asymptotic values for general Hamilton-Jabobi-Bellman equations
    2.1 Preliminaries
    2.2 Stochastic nonexpansivity condition
    2.3 Properties of value function
    2.4 General Hamilton-Jacobi-Bellman equations
    2.5 Example
Chapter 3 Representation of asymptotic values for nonexpansive s-tochastic control
    3.1 Preliminaries
    3.2 Convergence problem for the optimal control
    3.3 Appendix: Proof of Proposition 3.1.2(DPP)
Chapter 4 Characterisation of limit values for general Hamilton-Jabobi-Bellman-Isaacas equations
    4.1 Preliminaries
    4.2 Stochastic differential game and the value function
    4.3 Stochastic nonexpansivity condition
    4.4 Properties of value function
    4.5 General Hamilton-Jacobi-Bellman-Isaacs equations
    4.6 Example
Chapter 5 Representation of limit values for nonexpansive stochasticdifferential game
    5.1 Preliminaries
    5.2 Convergence problem for the stochastic differential game
References
作者简介
致谢
附件



本文编号:3243879

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/3243879.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2fdfe***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com