Littlewood-Paley算子的变指数交换子在变指数空间上的有界性
发布时间:2021-11-05 23:32
利用变指数Lipschitz空间范数的等价刻画,证明了Littlewood-Paley算子的变指数Lipschitz交换子从变指数Lebesgue空间到变指数Lebesgue空间或变指数Lipschitz空间是有界的。
【文章来源】:安徽师范大学学报(自然科学版). 2020,43(06)
【文章页数】:5 页
【文章目录】:
引 言
1 定义和引理
2 主要定理
【参考文献】:
期刊论文
[1]变指数Lipschitz交换子在变指数空间上的有界性[J]. 郭庆栋,周疆,房成龙. 东北师大学报(自然科学版). 2018(04)
[2]Parameterized Littlewood-Paley Operators and Their Commutators on Lebesgue Spaces with Variable Exponent[J]. Lijuan Wang,Shuangping Tao. Analysis in Theory and Applications. 2015(01)
[3]Weighted estimates for the multilinear commutators of the Littlewood-Paley operators[J]. XUE QingYing & DING Yong School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China. Science in China(Series A:Mathematics). 2009(09)
本文编号:3478718
【文章来源】:安徽师范大学学报(自然科学版). 2020,43(06)
【文章页数】:5 页
【文章目录】:
引 言
1 定义和引理
2 主要定理
【参考文献】:
期刊论文
[1]变指数Lipschitz交换子在变指数空间上的有界性[J]. 郭庆栋,周疆,房成龙. 东北师大学报(自然科学版). 2018(04)
[2]Parameterized Littlewood-Paley Operators and Their Commutators on Lebesgue Spaces with Variable Exponent[J]. Lijuan Wang,Shuangping Tao. Analysis in Theory and Applications. 2015(01)
[3]Weighted estimates for the multilinear commutators of the Littlewood-Paley operators[J]. XUE QingYing & DING Yong School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China. Science in China(Series A:Mathematics). 2009(09)
本文编号:3478718
本文链接:https://www.wllwen.com/kejilunwen/yysx/3478718.html