近单位根AR(1)过程的LAD估计
发布时间:2022-01-04 10:31
在本文中,我们考虑一阶自回归过程yt=ρnyt-1+ut.利用Davis,Knight&Liu(Stochastic Processes and their Applications,1992)中的方法,得到参数的最小绝对偏差(LAD)估计和渐近性质.首先,我们对近单位根过程初始条件进行讨论,平稳性情形时,LAD估计的渐近分布是柯西分布,爆炸性情形时,LAD估计的渐近分布仍为柯西分布,这是因为此时估计量的渐近分布与初始条件有关,初始条件控制其渐近性;其次,近单位根过程初始条件为y0=op(1)或0时,得到LAD估计的渐近性质,并在一定条件下给出它的随机积分表示.
【文章来源】:郑州大学河南省 211工程院校
【文章页数】:46 页
【学位级别】:硕士
【部分图文】:
图2.2叫分别服从W(〇,l),的爆炸性情形“的密度曲线.??19??
【参考文献】:
博士论文
[1]几类金融时间序列模型统计推断[D]. 周志永.浙江大学 2016
[2]半参数模型和近单位根过程的统计推断[D]. 袁裕泽.浙江大学 2011
本文编号:3568176
【文章来源】:郑州大学河南省 211工程院校
【文章页数】:46 页
【学位级别】:硕士
【部分图文】:
图2.2叫分别服从W(〇,l),的爆炸性情形“的密度曲线.??19??
【参考文献】:
博士论文
[1]几类金融时间序列模型统计推断[D]. 周志永.浙江大学 2016
[2]半参数模型和近单位根过程的统计推断[D]. 袁裕泽.浙江大学 2011
本文编号:3568176
本文链接:https://www.wllwen.com/kejilunwen/yysx/3568176.html