Lorentz-Minkowski时空中类空超曲面上类空曲线的洛伦兹Darboux曲面
发布时间:2022-02-20 09:11
在本文中,作为奇点理论中开折理论的应用,以Lorentz-Minkowski四维空间中类空超曲面上的一条正则曲线为研究对象,将沿着这条正则曲线的两种扩展的洛伦兹Darboux标架作为基本的研究工具,定义了正则曲线所生成的五个特殊的洛伦兹Darboux曲面,研究了这些洛伦兹Darboux曲面的奇点问题,同时刻画了表示五个洛伦兹Darboux曲面的奇点在洛伦兹变换群下的几个新的几何不变量,并详细地讨论了不变量的几何意义.除此之外,在Legendrian对偶的意义下,揭示了源曲线的法曲线与五个洛伦兹Darboux曲面之间的对偶关系.
【文章来源】:哈尔滨师范大学黑龙江省
【文章页数】:64 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
第1章 绪论
第2章 预备知识
2.1 基本概念和洛伦兹Darboux标架的建立
2.2 本章小结
第3章 A_k类奇点与开折
3.1 高度函数与A_k类奇点
3.2 洛伦兹Darboux曲面与开折定理
3.3 本章小结
第4章 洛伦兹Darboux曲面和超曲面上曲线的性质
4.1 洛伦兹Darboux曲面奇点的分类
4.2 超曲面上曲线的不变量的几何意义
4.3 Legendrian对偶
4.4 本章小结
第5章 例子
5.1 平面子空间上的曲线
5.2 双曲空间上FD-标架下的曲线
5.3 双曲空间上SD-标架下的曲线
5.4 本章小结
结论
参考文献
攻读硕士学位期间发表的学术论文
致谢
本文编号:3634727
【文章来源】:哈尔滨师范大学黑龙江省
【文章页数】:64 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
第1章 绪论
第2章 预备知识
2.1 基本概念和洛伦兹Darboux标架的建立
2.2 本章小结
第3章 A_k类奇点与开折
3.1 高度函数与A_k类奇点
3.2 洛伦兹Darboux曲面与开折定理
3.3 本章小结
第4章 洛伦兹Darboux曲面和超曲面上曲线的性质
4.1 洛伦兹Darboux曲面奇点的分类
4.2 超曲面上曲线的不变量的几何意义
4.3 Legendrian对偶
4.4 本章小结
第5章 例子
5.1 平面子空间上的曲线
5.2 双曲空间上FD-标架下的曲线
5.3 双曲空间上SD-标架下的曲线
5.4 本章小结
结论
参考文献
攻读硕士学位期间发表的学术论文
致谢
本文编号:3634727
本文链接:https://www.wllwen.com/kejilunwen/yysx/3634727.html