当前位置:主页 > 科技论文 > 数学论文 >

网络顶点表示学习方法

发布时间:2022-05-08 10:46
  网络是一种常用的数据结构,在社交、通信和生物等领域广泛存在,如何对网络顶点进行表示是学术界和工业界广泛关注的难点问题之一.网络顶点表示学习旨在将顶点映射到一个低维的向量空间,并且能够保留网络中顶点间的拓扑结构.本文在分析网络顶点表示学习的动机与挑战的基础上,对目前网络顶点表示学习的主流方法进行了详细分析与比较,主要包括基于矩阵分解、基于随机游走和基于深度学习的方法,最后介绍了衡量网络顶点表示性能的方法. 

【文章页数】:12 页


本文编号:3651512

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/3651512.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户aa2f8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com