可加(α,β)-泛函方程的稳定性
发布时间:2022-10-20 11:27
1940年Ulam提出关于群同态的稳定性问题,问题描述是给定一个度量群的近似同态映射,是否存在一个同态映射与其近似?1941年Hyers对Ulam提出的问题给出了第一个肯定的回答,随后Rassias减弱了 Hyers的有界柯西差分,把Hyers的结论推广到了无界柯西差分,因此将Rassias证明的稳定性称为Hyers-Ulam-Rassias稳定性,在本文中所研究的Hyers-Ulam稳定性是Hyers-Ulam-Rassias稳定性的一个特殊情况。特别地,在过去三十年中,对于多种泛函方程的稳定性研究已经有了较多的成果,方程类型的多元化、空间的多样性以及应用的广泛性,其研究发展越来越完善。本文研究了可加(α,β)-泛函方程的稳定性问题,主要有两部分构成:第一部分使用直接法证明了集值Pexider泛函方程在拓扑向量空间上的稳定性。第二部分使用不动点方法和直接法证明了可加(α,β)-泛函方程在非阿基米德空间中的Hyers-Ulam稳定性;对比引理和定理中的条件及结论,可得出方程系数的位置不同、取值范围不同,对其稳定性的研究有着不同的影响。
【文章页数】:44 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
第1章 绪论
1.1 问题的来源
1.2 国内外发展现状
1.3 本文主要研究问题以及论文结构
第2章 拓扑向量空间中集值Pexider泛函方程的稳定性
2.1 预备知识
2.2 集值Pexider泛函方程的稳定性:使用直接法
2.3 本章小结
第3章 非阿基米德空间中可加(α,β)-泛函方程的稳定性
3.1 预备知识
3.2 可加(α,β)-泛函方程(3.1)的稳定性:使用不动点方法和直接法
3.3 可加(α,β)-泛函方程(3.2)的稳定性:使用不动点方法和直接法
3.4 本章小结
第4章 结论与展望
参考文献
在学研究成果
致谢
【参考文献】:
期刊论文
[1]拟Banach空间上含参数的二次-可加混合型函数方程的解和Hyers-Ulam-Rassias稳定性[J]. 王春,许天周. 数学物理学报. 2017(05)
[2]Jordan(α,β)导子的广义Hyers-Ulam-Rassias稳定性[J]. 王琳. 数学杂志. 2013(02)
[3](α,β)-(β,α)型次可加集值映射的可加选择映射的存在唯一性[J]. 朴勇杰. 东北师大学报(自然科学版). 2009(04)
本文编号:3694407
【文章页数】:44 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
第1章 绪论
1.1 问题的来源
1.2 国内外发展现状
1.3 本文主要研究问题以及论文结构
第2章 拓扑向量空间中集值Pexider泛函方程的稳定性
2.1 预备知识
2.2 集值Pexider泛函方程的稳定性:使用直接法
2.3 本章小结
第3章 非阿基米德空间中可加(α,β)-泛函方程的稳定性
3.1 预备知识
3.2 可加(α,β)-泛函方程(3.1)的稳定性:使用不动点方法和直接法
3.3 可加(α,β)-泛函方程(3.2)的稳定性:使用不动点方法和直接法
3.4 本章小结
第4章 结论与展望
参考文献
在学研究成果
致谢
【参考文献】:
期刊论文
[1]拟Banach空间上含参数的二次-可加混合型函数方程的解和Hyers-Ulam-Rassias稳定性[J]. 王春,许天周. 数学物理学报. 2017(05)
[2]Jordan(α,β)导子的广义Hyers-Ulam-Rassias稳定性[J]. 王琳. 数学杂志. 2013(02)
[3](α,β)-(β,α)型次可加集值映射的可加选择映射的存在唯一性[J]. 朴勇杰. 东北师大学报(自然科学版). 2009(04)
本文编号:3694407
本文链接:https://www.wllwen.com/kejilunwen/yysx/3694407.html