当前位置:主页 > 科技论文 > 数学论文 >

耗散对称正则长波(SRLW)方程的有限体积元方法

发布时间:2017-08-11 12:21

  本文关键词:耗散对称正则长波(SRLW)方程的有限体积元方法


  更多相关文章: 有限体积元方法 对称正则长波方程 最佳阶误差估计 数值模拟


【摘要】:本文的主要研究内容是关于耗散SRLW方程的有限体积元格式,即其理论分析和数值模拟.第一章简单叙述了SRLW方程的历史及发展现状.第二章对耗散对称正则长波方程的空间半离散的有限体积元格式及时间向后Euler全离散格式进行了研究.本章研究思路:首先在区域上做原始网格剖分和相应的对偶网格剖分,其次通过搭建插值算子γh,得到了初边值问题的半离散有限体积元格式,然后在时间上利用向后Euler差分格式进行离散,从而得到向后Euler全离散有限体积元格式,分析了数值解的稳定性,并验证了格式的最佳价误差估计.第三章导出了在时间上达到二阶精度的Crank-Nicolson全离散有限体积元格式,分析了数值解的稳定性,并证明了格式的最佳价误差估计.最后对两种全离散格式,给出数值算例,充分说明了格式的有效性和可执行性.
【关键词】:有限体积元方法 对称正则长波方程 最佳阶误差估计 数值模拟
【学位授予单位】:内蒙古大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:O241.82
【目录】:
  • 中文摘要5-6
  • 英文摘要6-8
  • 第一章 引言8-12
  • 第二章 耗散对称正则长波方程的有限体积元方法12-20
  • 2.1 耗散对称正则长波方程空间半离散格式稳定性分析13-14
  • 2.2 耗散对称正则长波方程的空间半离散格式的误差估计14-15
  • 2.3 耗散对称正则长波方程全离散格式稳定性分析15-16
  • 2.4 耗散对称正则长波方程Euler全离散有限体积元格式的误差估计16-19
  • 2.5 数值算例19-20
  • 第三章 耗散对称正则长波方程Crank-Nicolson全离散有限体积元格式20-25
  • 3.1 Crank-Nicolson全离散有限体积元格式稳定性分析20-21
  • 3.2 Crank-Nicolson全离散有限体积元格式的误差估计21-22
  • 3.3 数值算例22-25
  • 结束语25-26
  • 参考文献26-29
  • 致谢29-30
  • 攻读硕士学位期间已发表的学术论文30

【相似文献】

中国期刊全文数据库 前10条

1 耿加强;毕春加;;二阶双曲方程的间断有限体积元方法[J];烟台大学学报(自然科学与工程版);2009年02期

2 贾保敏;杨青;;非线性拟双曲方程的有限体积元方法[J];科学技术与工程;2009年16期

3 陈国荣;王雪玲;熊之光;;一类参数识别问题的有限体积元计算[J];衡阳师范学院学报;2011年03期

4 张本良;3-动量体积元的局域洛仑兹形变及减除喷注中粒子测定的背景[J];四川师范大学学报(自然科学版);1990年04期

5 丰连海;求解二阶椭圆型偏微分方程的一种有限体积元格式[J];工程数学学报;2002年04期

6 高夫征;贾尚辉;;一类完全非线性抛物方程组的高次有限体积元方法及分析[J];高等学校计算数学学报;2005年S1期

7 朱爱玲;;抛物方程的扩展混合体积元方法[J];山东师范大学学报(自然科学版);2006年04期

8 陈长春;;四阶波动方程的有限体积元法[J];中国海洋大学学报(自然科学版);2007年01期

9 杨素香;;二维不可压缩无粘流动问题的特征混合体积元的数值模拟[J];山东科学;2007年05期

10 郭伟利;王同科;;两点边值问题基于应力佳点的一类二次有限体积元方法[J];应用数学;2008年04期

中国重要会议论文全文数据库 前2条

1 张阳;;一类非线性抛物型方程高次有限体积元的预测-校正格式及其最优L~2模误差估计[A];第四届全国青年计算物理学术会议论文摘要集[C];2006年

2 曾志;李君利;许振华;邱睿;;质子剂量的Monte Carlo计算方法[A];中国生物医学工程学会第六次会员代表大会暨学术会议论文摘要汇编[C];2004年

中国博士学位论文全文数据库 前10条

1 朱玲;两类界面问题的有限体积元方法[D];南京师范大学;2015年

2 闫金亮;波方程中一些新的能量守恒有限体积元方法[D];南京师范大学;2016年

3 田万福;混合有限体积元法[D];吉林大学;2010年

4 王全祥;流体力学中几类波方程的有限体积元方法[D];南京师范大学;2013年

5 方志朝;发展型方程的混合有限体积元方法及数值模拟[D];内蒙古大学;2013年

6 丁玉琼;解二阶椭圆型方程的高次有限体积元法的若干研究[D];吉林大学;2010年

7 杨e,

本文编号:656082


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/656082.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a4fb9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com