一类新型Block代数的结构及表示
本文关键词:一类新型Block代数的结构及表示
更多相关文章: Block代数 表示 最高权模 一致有界模 拟有限模
【摘要】:Block代数是一类无限维单李代数,它是1958年由R. Block最先引入的一类代数.最近,Block代数受到了许多国内外数学家的极大关注并取得了很好的发展,在此基础上,对一类新型Block代数的研究成为了重点课题,并且具有重要的意义.本文针对一类新型Block代数的结构及表示理论进行了研究.首先,介绍了新型Block代数B(p,q)的构造,证明了它是李代数;其次,在结构方面计算了它的唯一非平凡中心扩张;最后,在表示方面证明了它的不可约拟有限模的分类,并且利用生成级数刻画了它的最高权模.
【关键词】:Block代数 表示 最高权模 一致有界模 拟有限模
【学位授予单位】:黑龙江大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:O152.5
【目录】:
- 中文摘要3-4
- Abstract4-6
- 符号说明6-7
- 第1章 绪论7-12
- 1.1 研究背景及课题研究的意义7-9
- 1.2 国内外同类课题的发展趋势9-10
- 1.3 本文研究内容概述10-12
- 第2章 Block代数B(p,q)的构造12-16
- 2.1 Block代数B(p,q)的结构12-15
- 2.2 本章小结15-16
- 第3章 Block代数B(p,q)的结构理论16-27
- 3.1 Block代数B(p,q)的中心扩张16-26
- 3.2 本章小结26-27
- 第4章 Block代数B(p,q)的表示理论27-37
- 4.1 预备知识27-28
- 4.2 Block代数B(p,q)的拟有限最高权模分类28-32
- 4.3 Block代数B(p,q)的拟有限模分类32-36
- 4.4 本章小结36-37
- 结论37-38
- 参考文献38-44
- 致谢44-45
- 攻读学位期间发表的学术论文45-46
【相似文献】
中国期刊全文数据库 前10条
1 张海山;具有有限多个理想的李代数的性质[J];甘肃教育学院学报(自然科学版);2001年04期
2 朱富海,朱林生,孟道骥;一类新的对称自对偶李代数[J];数学年刊A辑(中文版);2002年01期
3 李晓沛,杨必中,徐沈新;一类广义李代数[J];湖南师范大学自然科学学报;2003年03期
4 朱林生;对称自对偶李代数研究进展[J];常熟高专学报;2003年02期
5 李军波;;一类李代数的阶化最高权模[J];常熟理工学院学报;2005年06期
6 桂淑伊,张永正;关于∑型李代数[J];哈尔滨师范大学自然科学学报;2005年01期
7 赵冠华;刘洁;;n-李代数的同构与扩张[J];海南大学学报(自然科学版);2006年02期
8 余德民;;对称自对偶李代数的一些性质[J];哈尔滨师范大学自然科学学报;2006年04期
9 余德民;;对称自对偶李代数的一些性质[J];数学的实践与认识;2006年11期
10 赵冠华;崔献军;;完备n-李代数的分解[J];海南大学学报(自然科学版);2007年01期
中国重要会议论文全文数据库 前3条
1 戴怀德;;NMR中密度算符的李代数研究[A];第四届全国波谱学学术会议论文摘要集[C];1986年
2 史小东;刘洪;丁仁伟;王之洋;;基于李代数积分的薄层多重散射消除技术[A];中国科学院地质与地球物理研究所2013年度(第13届)学术论文汇编——油气资源研究室[C];2014年
3 刘洪;何利;刘国锋;李博;;地层滤波公式的李代数积分证明和推广[A];中国科学院地质与地球物理研究所2008学术论文汇编[C];2009年
中国博士学位论文全文数据库 前10条
1 李小雨;可递李代数胚分类空间的研究[D];哈尔滨工业大学;2015年
2 汪春花;2-toroidal代数的模与Kirillov-Reshetikhin模[D];华南理工大学;2016年
3 周勖;扭仿射李代数的Drinfeld-Sokolov方程簇[D];清华大学;2015年
4 陈洪佳;一些根系分次李代数及其表示[D];中国科学技术大学;2008年
5 姚裕丰;李代数模表示中若干问题的研究[D];华东师范大学;2010年
6 袁腊梅;数学物理问题中几类无限维分次李代数的形变理论[D];中国科学技术大学;2011年
7 高永存;无限维李代数与广义顶点代数[D];南开大学;2001年
8 许莹;扩张仿射李代数的双代数结构和W(a,b)李代数的表示[D];中国科学技术大学;2012年
9 谭海军;几类李代数的非权表示[D];河北师范大学;2014年
10 李海玲;李代数及(?)-阶化李超代数上相关问题研究[D];大连理工大学;2010年
中国硕士学位论文全文数据库 前10条
1 王晓玲;特征2域上低维n-李代数的分类[D];河北大学;2008年
2 佘志强;无挠的与李代数胚结构可交换的李代数胚联络及其性质[D];首都师范大学;2005年
3 贾培佩;最简线状n-李代数[D];河北大学;2006年
4 李红智;n-李代数的复化和实单n-李代数的分类[D];河北大学;2004年
5 顾颐臣;李代数的型心[D];苏州大学;2007年
6 王松;对称自对偶色李代数[D];苏州大学;2008年
7 李俊钦;李代数的一般根论[D];湖南大学;2012年
8 张鹤;某些李代数上的三幂结合结构[D];黑龙江大学;2013年
9 陈双双;度量3-李代数的辛结构[D];河北大学;2015年
10 邹大欢;三维Hom-预李代数与低维幂零李代数的双极化[D];辽宁师范大学;2015年
,本文编号:921244
本文链接:https://www.wllwen.com/kejilunwen/yysx/921244.html