当前位置:主页 > 农业论文 > 农作物论文 >

棉花氮素高效利用的生理和分子机制研究

发布时间:2021-06-24 01:35
  氮是植物生长发育所必需的大量营养元素,对作物产量和品质的形成具有关键作用。棉花是重要经济作物之一。但是,肥料成本特别是氮肥成本高,是棉花种植者面临的重要问题之一。筛选高氮肥利用率棉花材料,研究其高氮肥利用率的生理机制和分子机制,从而培育氮高效的棉花品种,是从根本上解决上述问题的有效途径之一。目前,在棉花氮高效研究方面,不同氮效率基因型棉花的氮素高效利用的生理机制和分子机制研究报道较少。本研究在前期筛选得到氮高效和氮低效棉花品种的基础上,研究在不同氮水平下根系构型、功能叶光合特性、功能器官碳氮代谢同化物质含量及其酶活性、关键基因介导的共表达调控网络的变化规律,以期揭示棉花氮高效的生理和分子机制,为棉花生产中利用育种手段和栽培措施改善提高棉花的氮素利用效率提供理论依据。现将取得的主要结果概括如下:以6种不同氮效率基因型棉花品种为材料,研究了在不同氮水平下棉花苗期生长发育和氮素代谢等性状。发现不同氮效率基因型的棉花品种地下部相关性状与氮素利用效率(NUtE)呈正相关,而地上部性状和氮同化酶与氮素吸收效率(NUpE)呈正相关。在正常氮(2.5 mM)条件下,氮高效基因型棉花品种表现出较高的氮素... 

【文章来源】:中国农业科学院北京市

【文章页数】:256 页

【学位级别】:博士

【文章目录】:
摘要
Abstract
Dedications
List of Abbreviations
CHAPTER 1.INTROUCTION
    1.1 Nitrogen fertilization
    1.2 Nitrogen use efficiency
    1.3 Morphological and physiological responses of plants to N supply
        1.3.1 Plant morphological responses to nitrogen supply
        1.3.2 Plant physiological responses to nitrogen supply
    1.4 Molecular responses of plants to N supply
        1.4.1 Nitrate uptake
        1.4.2 Nitrate transport
        1.4.3 Nitrate assimilation
    1.5 Physiological mechanism of NUE
    1.6 Molecular mechanisms and regulatory networks of NUE in plants
    1.7 Cotton nitrogen use efficiency
    1.8 The objectives of the study
CHAPTER 2:GENOTYPIC VARIATIONS IN COTTON GENOTYPES FOR NITROGEN USE EFFICIENCY AND RELATED TRAITS IN RESPONSE TO VARIOUS NITROGEN CONCENTRATIONS
    2.1 Materials and Methods
        2.1.1 Plant materials and treatments
        2.1.2 Plant morphological characteristics
        2.1.3 Measurement of gas exchange parameters
        2.1.4 Measurement of N concentration and NUE traits
        2.1.5 Measurement of N assimilating enzymatic activities
        2.1.6 Measurement of total soluble protein,free amino acids and total soluble sugars
        2.1.7 Statistical analysis
    2.2 Results
        2.2.1 Genotypic variations in plant morphology and physiology
        2.2.2 Genotypic variations in NUE traits
        2.2.3 Genotypic variation in N-assimilating enzymes and products
        2.2.4 Multivariate analysis of trait mining for NUE
    2.3 Discussion
        2.3.1 Variations in morph-physiological capacities among cotton genotypes
        2.3.2 Variations in N metabolism are tightly associated with NUE
        2.3.3 Multivariate analysis identified key traits associated with NUE
    2.4 Conclusions
CHAPTER 3:OPTIMIZATION OF NITROGEN CONCENTRATIONS IN COTTON GENOTYPES BASED ON NITROGEN METABOLISM AND TRAITS ASSOCIATED WITH NITROGEN UPTAKE AND UTILIZATION EFFICIENCY
    3.1 Materials and Methods
        3.1.1 Plant cultivation and nitrogen treatment
        3.1.2 Plant morphological characteristics
        3.1.3 Measurement of photosynthetic characteristics
        3.1.4 Measurement of N concentration and NUE traits
        3.1.5 Measurement of N-metabolizing enzymatic activities
        3.1.6 Measurement of total soluble protein and total free amino acids
        3.1.7 Statistical analysis
    3.2 Results
        3.2.1 Growth and photosynthesis
        3.2.2 Nitrogen use efficiency
        3.2.3 Nitrogen metabolism
        3.2.4 ANOVA and principal component analysis
        3.2.5 Correlation analysis
    3.3 Discussion
        3.3.1 Variations in morpho-physiological and biochemical traits among cotton genotypes
        3.3.2 Variations in morpho-physiological and biochemical traits are associated with NUE
    3.4 Conclusions
CHAPTER 4:GENOTYPIC VARIATIONS IN CARBON AND NITROGEN METABOLISM OF COTTON SHOWED PREFERENTIAL ALLOCATION OF CARBOHYDRATES AS A POTENTIAL MECHANISM IN NITROGEN USE EFFICIENCY
    4.1 Materials and Methods
        4.1.1 Plant materials and treatments
        4.1.2 Plant morphology
        4.1.3 Measurement of gas exchange parameters
        4.1.4 Measurement of N concentration and NUE traits
        4.1.5 Measurements carbohydrate(sucrose and fructose)content
        4.1.6 Enzyme extraction and analysis
        4.1.7 Statistical analysis
    4.2 Results
        4.2.1 Morpho-physiological indices
        4.2.2 N concentration and use efficiency
        4.2.3 Changes in root-shoot carbohydrates(sucrose and fructose)content
        4.2.4 Enzymatic activities involved in carbon and nitrogen metabolism
        4.2.5 Multivariate analysis for key traits mining
    4.3 Discussion
        4.3.1 N-efficient genotype allocated more carbohydrates to root for a better root system under low N concentration
        4.3.2 N-efficient genotype maintained better growth and C/N metabolism under normal N concentration
        4.3.3 Implications of traits for future research
    4.4 Conclusions
CHAPTER 5:PHOTOSYNTHESIS,CARBON AND NITROGEN METABOLISM OF COTTON SUBTENDING LEAVES IMPROVE YIELD IN COTTON GENOTYPES IN RESPONSE TO VARIOUS NITROGEN SUPPLY
    5.1 Material and Methods
        5.1.1 Plant materials and treatments
        5.1.2 Sampling
        5.1.3 Plant morphology
        5.1.4 Measurement of gas exchange parameters
        5.1.5 Measurement of N concentration and NUE traits
        5.1.6 Measurements carbohydrate(sucrose and fructose)content
        5.1.7 Enzyme extraction and analysis
        5.1.8 Cotton yield
        5.1.9 Statistical analysis
    5.2 Results
        5.2.1 Plant dry matter production
        5.2.2 Cotton subtending leaf morphology
        5.2.3 Photosynthetic attributes of subtending leaf
        5.2.4 Carbon metabolism in subtending leaf
        5.2.5 Nitrogen metabolism in the subtending leaf
        5.2.6 Free amino acids,soluble protein and sugar contents in the subtending leaf
        5.2.7 Nitrogen concentration and use efficiency
        5.2.8 Yield and yield attributes
        5.2.9 Source sink relationship
    5.3 Discussion
        5.3.1 Cotton genotypes showed differential carbon metabolism in the subtending leaves
        5.3.2 Genotypic variation for N metabolism in the subtending leaves
        5.3.3 Effect of N application on subtending leaf morphology,photosynthesis and yield formation
    5.4 Conclusions
CHAPTER 6:TRANSCRIPTOME ANALYSIS REVEALS DIFFERENCES IN KEY GENES AND PATHWAYS REGULATING CARBON AND NITROGEN METABOLISM IN COTTON GENOTYPES
    6.1 Materials and Methods
        6.1.1 Plant cultivation and nitrogen treatment
        6.1.2 Measurement of key enzymes activities in n metabolism
        6.1.3 RNA-Seq Sampling,RNA extraction,and m RNA-Seq library construction for Illumina sequencing
        6.1.4 Data filtering,mapping of reads,and functional annotation
        6.1.5 Co-expression network analysis of genes related to amino acid,carbon and nitrogen metabolism
        6.1.6 Validation of RNA-Seq analysis by q RT-PCR
    6.2 Results
        6.2.1 Summary of RNA sequencing results
        6.2.2 Differentially expressed gene analysis
        6.2.3 Gene ontology(GO)enrichment analysis of DEGs
        6.2.4 Kyoto encyclopedia of genes and genomes(KEGG)enrichment analysis of DEGs
        6.2.5 DEGs involved in root amino acid,carbon,and nitrogen metabolism
        6.2.6 DEGs involved in shoot amino acid,carbon,and nitrogen metabolism
        6.2.7 Coexpression networks reveal a differential regulatory network of amino acid,carbon,and nitrogen metabolism under N starvation and n resupply
        6.2.8 Activities of the key N assimilation enzymes
        6.2.9 Validation of the expression patterns of selected DEGs by q RT-PCR
    6.3 Discussion
        6.3.1 Abundance of transcripts in the major pathways related to amino acid,carbon,and nitrogen metabolism
        6.3.2 Nitrogen metabolic networks in response to nitrogen starvation and resupply treatments
        6.3.3 Molecular mechanism and regulation of carbon and nitrogen metabolism
    6.4 Conclusions
CHAPTER 7:COMPARATIVE TRANSCRIPTOME AND CO-EXPRESSION ANALYSIS REVEALS KEY GENES AND PATHWAYS REGULATING NITROGEN USE EFFICIENCY IN COTTON GENOTYPES
    7.1 Materials and Methods
        7.1.1 Plant materials and treatments
        7.1.2 RNA extraction,c DNA library construction and Illumina Sequencing
        7.1.3 RNA-Seq data processing and analysis
        7.1.4 Co-expression network analysis of genes
        7.1.5 q RT-PCR analysis
    7.2 Results
        7.2.1 Differentially expressed genes identified in the root and shoot of cotton genotypes in response to N-starvation and resupply
        7.2.2 Functional annotation of the differentially expressed genes
        7.2.3 DEGs associated with nutrients transporters
        7.2.4 DEGs related to hormone signaling
        7.2.5 Identification of DEGs related to photosynthesis
        7.2.6 Identification of deferentially expressed transcription factors
        7.2.7 DEGs involved in antioxidant activity
        7.2.8 Co-expression analysis reveal regulatory networks responsible for NUE
    7.3 Discussion
        7.3.1 Nitrate transporters
        7.3.2 Hormones
        7.3.3 Photosynthesis
        7.3.4 Transcription factor
        7.3.5 Antioxidant stress
    7.4 Conclusion
CONCLUSIONS AND FUTURE PERSPECTIVES
REFERENCES
APPENDICES
ACKNOWLEDGMENTS
CURRICULUM VITAE


【参考文献】:
期刊论文
[1]Genetic variation in eggplant for Nitrogen Use Efficiency under contrasting NO3- supply[J]. Antonio Mauceri,Laura Bassolino,Antonio Lupini,Franz Badeck,Fulvia Rizza,Massimo Schiavi,Laura Toppino,Maria Rosa Abenavoli,Giuseppe L.Rotino,Francesco Sunseri.  Journal of Integrative Plant Biology. 2020(04)
[2]Identification and screening of nitrogenefficient cotton genotypes under low and normal nitrogen environments at the seedling stage[J]. ZHANG Hengheng,FU Xiaoqiong,WANG Xiangru,GUI Huiping,DONG Qiang,PANG Nianchang,WANG Zhun,ZHANG Xiling,SONG Meizhen.  Journal of Cotton Research. 2018(02)
[3]谷子MYB类转录因子SiMYB42提高转基因拟南芥低氮胁迫耐性[J]. 丁庆倩,王小婷,胡利琴,齐欣,葛林豪,徐伟亚,徐兆师,周永斌,贾冠清,刁现民,闵东红,马有志,陈明.  遗传. 2018(04)
[4]钾肥用量对棉花生物量和产量的影响(英文)[J]. 杨国正,王德鹏,聂以春,张献龙.  作物学报. 2013(05)
[5]PYR/PYL/RCAR蛋白介导植物ABA的信号转导[J]. 胡帅,王芳展,刘振宁,刘亚培,余小林.  遗传. 2012(05)
[6]花后土壤水分状况对小麦籽粒淀粉和蛋白质积累关键调控酶活性的影响(英文)[J]. 谢祝捷,姜东,曹卫星,戴廷波,荆奇.  植物生理与分子生物学学报. 2003(04)



本文编号:3246084

资料下载
论文发表

本文链接:https://www.wllwen.com/nykjlw/nzwlw/3246084.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7de20***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com