高糖高脂日粮对团头鲂生长性状、肝组织结构及转录组的影响
发布时间:2021-11-01 23:31
团头鲂是中国重要的淡水草食性混养鱼类之一。近年来,如何最大限度地利用非蛋白能量饲料及其在饲料中如何正确配比等问题已有较多研究与报道。非蛋白能量饲料的过量使用可以造成鱼类体脂的大量沉积,从而导致鱼类脂肪肝疾病。然而迄今为止,有关非蛋白能量饲料过量使用导致团头鲂脂肪肝疾病发生的相关报道较少。通常情况下,鱼类摄食是由饵料能量及营养成分等因素协同调节影响鱼类健康,而鱼类健康又与相关功能基因的表达有关,类似的研究已在其它鱼类中获得证实,如虹鳟、金鲳等。团头鲂该方面的相关研究,主要集中在碳水化合物与脂肪饲料对团头鲂生长性能及免疫机制改善等方面的研究,而由于日粮中高糖高脂导致团头鲂脂肪沉积所产生的生长性能和肝组织改变,以及其变化后的转录组学特征未见报道。因此,本文以团头鲂为研究对象,经过8周高糖高脂日粮的饲养实验,利用组织切片与转录组学的方法来研究高脂日粮(HFD,脂肪含量12.22%)、高糖日粮(HCBD,还原糖含量34.13%)和高脂高糖日粮(HFHCD,脂肪含量10.43%,还原糖含量30.80%)对团头鲂生长性能、肝组织及肝转录组的影响,并在此基础上,结合实时定量PCR、血液生化指标及部分肝...
【文章来源】:华中农业大学湖北省 211工程院校 教育部直属院校
【文章页数】:154 页
【学位级别】:博士
【文章目录】:
中文摘要
ABSTRACT
ABBREVIATIONS
CHAPTER 1 Review of literature
1.1 General introduction of Megalobrama amblycephala
1.1.1 Biological characteristics
1.1.2 Megalobrama amblycephala nutrient requirements
1.1.3 The problem of Megalobrama amblycephala in productions
1.2 Transcriptome study
1.2.1 Introduction of transcriptome
1.2.2 The ability of transcriptomics
1.2.3 The use of transcriptome data to explore gene functions
1.2.4 Transcriptome studies in aquatic animals
1.2.5 The study of transcriptome in Megalobrama amblycephala
1.3 Fat and carbohydrate in fish diets
1.3.1 Fat and carbohydrate characteristics
1.3.2 Function in animals
1.3.3 Fat and carbohydrate diets in aquaculture
1.4 Fatty liver disease
1.4.1 Fatty liver disease types
1.4.2 Fatty liver disease in fish researches
1.5 Objective and significance
1.5.1 Objective
1.5.2 Significance
CHAPTER 2 The effect of high fat and high carbohydrate diets on growth and liver histology of Megalobrama amblycephala
2.1 Introduction
2.2 Materials and methods
2.2.1 Animal rearing and experimental procedures
2.2.2 Dietary preparation and proximate analysis
2.2.3 Sample collection
2.2.4 Histology
2.3 Results
2.3.1 The effect of high fat and high carbohydrate diets on growth performance
2.3.2 Liver histology changes of BSB fed with high fat and high carbohydrate diets
2.4 Discussion
CHAPTER 3 The overview of transcriptome analysis fed with high fat and high carbohydrate diets in Megalobrama amblyphyla
3.1 Introduction
3.2 Materials and methods
3.2.1 Sampling and RNA extraction
3.2.2 c DNA library preparation and Illumina sequencing
3.2.3 De novo assembly of sequencing reads
3.2.4 Annotation
3.2.5 Gene expression analysis
3.2.6 SSR markers
3.3 Results
3.3.1 Transcriptome sequencing and assembly
3.3.2 Blast search analysis and unigene functional annotation
3.3.3 The differentially expressed gene profile
3.3.4 Pathway analysis
3.3.5 SSR markers
3.4 Discussion
CHAPTER 4 High Carbohydrate Diet Negatively Affects the Liver Health of Megalobrama amblycephala
4.1 Introduction
4.2 Materials and methods
4.2.1 Diet preparation and proximate analysis
4.2.2 Animal rearing, experimental procedures and sample collection
4.2.3 Metabolomics study by NMR
4.2.4 Transcriptome analysis
4.2.5 qRT-PCR analysis
4.3 Results
4.3.1 Hepatosomatic index and liver histology
4.3.2 Serum biochemistry
4.3.3 The metabolomics of serum and liver
4.3.4 Impacts of high-carbohydrate diet on the expressions of DEGs associated with NAFLD and insulin signaling pathways
4.4 Discussions
4.4.1 High-carbohydrate induced hepatosomatic index and liver histology changes
4.4.2 High-carbohydrate induced changes in serum biochemistry
4.4.3 High-carbohydrate induced fatty liver associated changes in serum metabolomics and liver metabolomics
4.4.4 The expression of DEGs in NAFLD and insulin signaling pathways via transcriptome and qRT-PCR
CHAPTER 5 High-fat-high-carbohydrate diet causes mitochondrial dysfunction in the liver of Megalobrama amblycephala
5.1 Introduction
5.2 Materials and methods
5.2.1 Diet preparation and proximate analysis
5.2.2 Animal rearing, feeding and sample collection
5.2.3 Transcriptome analysis
5.2.3.1 RNA extraction
5.2.3.2 cDNA library preparation and Illumina sequencing
5.2.3.3 De novo assembly of sequencing reads
5.2.3.4 Annotation
5.2.3.5 Ontology analysis
5.2.3.6 Gene expression analysis
5.2.4 qRT-PCR analysis
5.3 Results
5.3.1 Transcriptome sequencing and annotation of unigenes
5.3.2 Differential expression analysis
5.3.3 qRT-PCR
5.4 Discussion
CONCLUSIONS
REFERENCES
APPENDIX 1
Fig. S1 Metabolomics graphs
Fig. S2 ~1H NMR spectra
Fig. S3 KEGG pathways
Fig. S4 Alzheimer’s disease
Fig. S5 Huntington’s disease
Fig. S6 Parkinson’s disease
Table S1. ~1H NMR signal assignment of metabolites in serum and liver extracts
Table S2. Differentially expressed genes
APPENDIX 2 Publications
APPENDIX 3 Awards and Funding
ACKNOWLEDGEMENTS
【参考文献】:
期刊论文
[1]饲料蛋白质脂肪比与不同生长阶段团头鲂全鱼蛋白质、脂肪含量及肌肉氨基酸、脂肪酸组成的关系[J]. 姚林杰,叶元土,蔡春芳,许凡,刘猛,刘汉超,董娇娇,陈科全,黄雨薇. 动物营养学报. 2014(08)
[2]Microsatellite analysis of variation among wild,domesticated,and genetically improved populations of blunt snout bream(Megalobrama amblycephala)[J]. Shou-Jie TANG,Si-Fa LI,Wan-Qi CAI,Yan ZHAO. Zoological Research. 2014(02)
[3]团头鲂3个地理种群杂交效果的配合力和微卫星标记预测[J]. 曾聪,张耀,曹小娟,罗伟,刘肖莲,高泽霞,钱雪桥,王卫民. 水产学报. 2012(06)
[4]饲料中豆粕蛋白替代鱼粉蛋白对齐口裂腹鱼幼鱼生长性能、体成分及血液生化指标的影响[J]. 向枭,周兴华,陈建,李代金,王文娟,周小秋. 水产学报. 2012(05)
[5]Genetically modified mouse models for the study of nonalcoholic fatty liver disease[J]. Perumal Nagarajan,M Jerald Mahesh Kumar,Ramasamy Venkatesan,Subeer S Majundar,Ramesh C Juyal. World Journal of Gastroenterology. 2012(11)
[6]团头鲂野生、驯养、选育3类遗传生态群体遗传变异的线粒体DNA分析[J]. 唐首杰,李思发,蔡完其. 中国水产科学. 2011(03)
[7]团头鲂对营养需求的研究进展[J]. 张媛媛,刘波,周传朋,戈贤平,谢骏,徐跑. 安徽农业科学. 2010(32)
[8]利用RAPD指纹分析技术分析3种鲤科鱼群体的遗传变异[J]. 张金洲,项智锋,李学斌,王清华,张廷虎,赵海涛,郭玉娇. 安徽农业科学. 2008(24)
[9]淤泥湖、梁子湖、鄱阳湖团头鲂mtDNA序列变异及遗传结构分析[J]. 李弘华. 淡水渔业. 2008(04)
[10]Pathogenesis and management issues for non-alcoholic fatty liver disease[J]. Marko Duvnjak,Ivan Leroti,Neven Bari,Vedran Tomai,Lucija Virovi Juki,Vedran Velagi. World Journal of Gastroenterology. 2007(34)
本文编号:3470893
【文章来源】:华中农业大学湖北省 211工程院校 教育部直属院校
【文章页数】:154 页
【学位级别】:博士
【文章目录】:
中文摘要
ABSTRACT
ABBREVIATIONS
CHAPTER 1 Review of literature
1.1 General introduction of Megalobrama amblycephala
1.1.1 Biological characteristics
1.1.2 Megalobrama amblycephala nutrient requirements
1.1.3 The problem of Megalobrama amblycephala in productions
1.2 Transcriptome study
1.2.1 Introduction of transcriptome
1.2.2 The ability of transcriptomics
1.2.3 The use of transcriptome data to explore gene functions
1.2.4 Transcriptome studies in aquatic animals
1.2.5 The study of transcriptome in Megalobrama amblycephala
1.3 Fat and carbohydrate in fish diets
1.3.1 Fat and carbohydrate characteristics
1.3.2 Function in animals
1.3.3 Fat and carbohydrate diets in aquaculture
1.4 Fatty liver disease
1.4.1 Fatty liver disease types
1.4.2 Fatty liver disease in fish researches
1.5 Objective and significance
1.5.1 Objective
1.5.2 Significance
CHAPTER 2 The effect of high fat and high carbohydrate diets on growth and liver histology of Megalobrama amblycephala
2.1 Introduction
2.2 Materials and methods
2.2.1 Animal rearing and experimental procedures
2.2.2 Dietary preparation and proximate analysis
2.2.3 Sample collection
2.2.4 Histology
2.3 Results
2.3.1 The effect of high fat and high carbohydrate diets on growth performance
2.3.2 Liver histology changes of BSB fed with high fat and high carbohydrate diets
2.4 Discussion
CHAPTER 3 The overview of transcriptome analysis fed with high fat and high carbohydrate diets in Megalobrama amblyphyla
3.1 Introduction
3.2 Materials and methods
3.2.1 Sampling and RNA extraction
3.2.2 c DNA library preparation and Illumina sequencing
3.2.3 De novo assembly of sequencing reads
3.2.4 Annotation
3.2.5 Gene expression analysis
3.2.6 SSR markers
3.3 Results
3.3.1 Transcriptome sequencing and assembly
3.3.2 Blast search analysis and unigene functional annotation
3.3.3 The differentially expressed gene profile
3.3.4 Pathway analysis
3.3.5 SSR markers
3.4 Discussion
CHAPTER 4 High Carbohydrate Diet Negatively Affects the Liver Health of Megalobrama amblycephala
4.1 Introduction
4.2 Materials and methods
4.2.1 Diet preparation and proximate analysis
4.2.2 Animal rearing, experimental procedures and sample collection
4.2.3 Metabolomics study by NMR
4.2.4 Transcriptome analysis
4.2.5 qRT-PCR analysis
4.3 Results
4.3.1 Hepatosomatic index and liver histology
4.3.2 Serum biochemistry
4.3.3 The metabolomics of serum and liver
4.3.4 Impacts of high-carbohydrate diet on the expressions of DEGs associated with NAFLD and insulin signaling pathways
4.4 Discussions
4.4.1 High-carbohydrate induced hepatosomatic index and liver histology changes
4.4.2 High-carbohydrate induced changes in serum biochemistry
4.4.3 High-carbohydrate induced fatty liver associated changes in serum metabolomics and liver metabolomics
4.4.4 The expression of DEGs in NAFLD and insulin signaling pathways via transcriptome and qRT-PCR
CHAPTER 5 High-fat-high-carbohydrate diet causes mitochondrial dysfunction in the liver of Megalobrama amblycephala
5.1 Introduction
5.2 Materials and methods
5.2.1 Diet preparation and proximate analysis
5.2.2 Animal rearing, feeding and sample collection
5.2.3 Transcriptome analysis
5.2.3.1 RNA extraction
5.2.3.2 cDNA library preparation and Illumina sequencing
5.2.3.3 De novo assembly of sequencing reads
5.2.3.4 Annotation
5.2.3.5 Ontology analysis
5.2.3.6 Gene expression analysis
5.2.4 qRT-PCR analysis
5.3 Results
5.3.1 Transcriptome sequencing and annotation of unigenes
5.3.2 Differential expression analysis
5.3.3 qRT-PCR
5.4 Discussion
CONCLUSIONS
REFERENCES
APPENDIX 1
Fig. S1 Metabolomics graphs
Fig. S2 ~1H NMR spectra
Fig. S3 KEGG pathways
Fig. S4 Alzheimer’s disease
Fig. S5 Huntington’s disease
Fig. S6 Parkinson’s disease
Table S1. ~1H NMR signal assignment of metabolites in serum and liver extracts
Table S2. Differentially expressed genes
APPENDIX 2 Publications
APPENDIX 3 Awards and Funding
ACKNOWLEDGEMENTS
【参考文献】:
期刊论文
[1]饲料蛋白质脂肪比与不同生长阶段团头鲂全鱼蛋白质、脂肪含量及肌肉氨基酸、脂肪酸组成的关系[J]. 姚林杰,叶元土,蔡春芳,许凡,刘猛,刘汉超,董娇娇,陈科全,黄雨薇. 动物营养学报. 2014(08)
[2]Microsatellite analysis of variation among wild,domesticated,and genetically improved populations of blunt snout bream(Megalobrama amblycephala)[J]. Shou-Jie TANG,Si-Fa LI,Wan-Qi CAI,Yan ZHAO. Zoological Research. 2014(02)
[3]团头鲂3个地理种群杂交效果的配合力和微卫星标记预测[J]. 曾聪,张耀,曹小娟,罗伟,刘肖莲,高泽霞,钱雪桥,王卫民. 水产学报. 2012(06)
[4]饲料中豆粕蛋白替代鱼粉蛋白对齐口裂腹鱼幼鱼生长性能、体成分及血液生化指标的影响[J]. 向枭,周兴华,陈建,李代金,王文娟,周小秋. 水产学报. 2012(05)
[5]Genetically modified mouse models for the study of nonalcoholic fatty liver disease[J]. Perumal Nagarajan,M Jerald Mahesh Kumar,Ramasamy Venkatesan,Subeer S Majundar,Ramesh C Juyal. World Journal of Gastroenterology. 2012(11)
[6]团头鲂野生、驯养、选育3类遗传生态群体遗传变异的线粒体DNA分析[J]. 唐首杰,李思发,蔡完其. 中国水产科学. 2011(03)
[7]团头鲂对营养需求的研究进展[J]. 张媛媛,刘波,周传朋,戈贤平,谢骏,徐跑. 安徽农业科学. 2010(32)
[8]利用RAPD指纹分析技术分析3种鲤科鱼群体的遗传变异[J]. 张金洲,项智锋,李学斌,王清华,张廷虎,赵海涛,郭玉娇. 安徽农业科学. 2008(24)
[9]淤泥湖、梁子湖、鄱阳湖团头鲂mtDNA序列变异及遗传结构分析[J]. 李弘华. 淡水渔业. 2008(04)
[10]Pathogenesis and management issues for non-alcoholic fatty liver disease[J]. Marko Duvnjak,Ivan Leroti,Neven Bari,Vedran Tomai,Lucija Virovi Juki,Vedran Velagi. World Journal of Gastroenterology. 2007(34)
本文编号:3470893
本文链接:https://www.wllwen.com/nykjlw/scyylw/3470893.html