新型杂化纳米材料的合成及其催化和生物应用
发布时间:2023-05-14 19:53
有机污染物造成的水污染是人类和环境生态系统的严重问题。化妆品、纺织、塑料、造纸、食品加工等多个工厂使用大量的染料。由于染料不可生物降解的性质,染料向水圈(河流、湖泊、海洋等)的排放给人类社会带来了许多挑战。此外,非常低浓度的染料(<1 mg/L)对水体生态的影响也是显著的。同样,医院中与医疗保健相关的感染对医疗保健系统造成严重的经济后果。大多数诺氏菌感染是由耐药或耐多药细菌产生的,如大肠杆菌、金黄色葡萄球菌和β溶血性链球菌。新型抗菌材料的设计是制定控制医疗相关感染新战略的最重要挑战之一。此外,还特别关注抗氧化活性高的天然物质。事实上,由多种因素弓起的氧化应激是许多病理状况产生的主要原因,如炎症、癌症、冠心病甚至皮肤老化。为了克服所有这些问题,设计新材料已成为研究人员应对现实世界中迫切需要的一大挑战。为了达到这一目标,人们非常重视开发新的路线,以设计和合成具有理想性能的材料。因此,研究者已作出努力,以最低的生产成本研制多种卓越的功能化新复合材料。本论文研究致力于研究构建新型高效、优异稳定性和可重复使用性的杂化复合材料,并开展多种应用研究。以下是本文研究的内容:1、本文报道了一种使用...
【文章页数】:177 页
【学位级别】:博士
【文章目录】:
Abstract
摘要
Chapter 1 General Introduction
1.1 Introduction
1.2 History and development of nanomaterials
1.3 Types of nanomaterials
1.3.1 Composite-based metal organic hybrid nanomaterials
1.3.2 Carbon-based nanomaterials
1.3.3 Inorganic-based nanomaterials
1.3.4 Organic-based nanomaterials
1.3.4.1 Biopolymers
1.3.4.2 Synthetic polymers
1.4 Ligands for metal organic hybrid nanocomposites
1.5 Properties of metal organic hybrid nanocomposites
1.6 Metal organic hybrid nanomaterials as a biomimetic catalyst
1.7 Metalloenzyme
1.7.1 Laccase like mimic behavior
1.8 Metal organic hybrid nanomaterials in water treatment
1.9 Antimicrobial activity of Metal organic hybrid nanomaterials
1.10 Hybrid nanomaterials
1.11 Different method of synthesis for hybrid nanomaterials
1.12 Need for eco-benign synthesis
1.13 Applications of hybrid nanocomposite
1.13.1 Antibacterial activity of hybrid nanocomposite
1.13.2 Photocatalytic activity of hybrid nanocomposite
1.13.3 Antioxidant activity of hybrid nanocomposite
1.14 Aims and objectives
1.14.1 Objective 1
1.14.2 Objective 2
1.14.3 Objective 3
Chapter 2 Facile synthesis of laccase mimic CuH3BTC MOF for efficient dye degradation anddetection of phenolic pollutants
2.1 Experimental materials
2.2 Experimental methods
2.2.1 Preparation of Cu/H3BTC MOF
2.2.2 Characterization of Cu/H3BTC MOF
2.2.3 Effect of Cu/H3BTC MOF and laccase on AB-10B degradation
2.2.4 Catalytic stability of Cu/H3BTC MOF on AB-10B degradation
2.2.5 Laccase-like mimic activity of Cu/H3BTC MOF
2.2.6 Evaluation of catalytic stability of Cu/H3BTC MOF
2.2.7 Catalytic oxidation of epinephrine by Cu/H3BTC MOF and laccase
2.3 Analysis of experimental results
2.3.1 Laccase-like activity of Cu/H3BTC MOF
2.3.2 Structural characterization
2.3.3 Degradation of AB-10B at different time intervals
2.3.4 Degradation stability and recyclability of Cu/H3BTC MOF
2.3.5 Catalytic detection of phenolic pollutants by Cu/H3BTC MOF
2.3.6 Detection of epinephrine based on Cu/H3BTC MOF
2.3.7 Catalytic stability of Cu/H3BTC MOF
2.4 Summary
Chapter 3 Cu/H3BTC MOF as a potential antibacterial therapeutic agent against Staphylococcusaureus and Escherichia coli
3.1 Experimental Materials
3.2 Experimental Methods
3.2.1 Synthesis of Cu/H3BTC MOF
3.2.2 Bacterial strains and culture
3.2.3 Diameter of inhibition zone
3.2.4 Elucidation of minimum inhibitory concentration (MIC)
3.2.5 Time-kill assay
3.2.6 Scanning electron microscopy(SEM)
3.2.7 Confocal laser scanning microscopy (CLSM) study
3.2.8 Integrity of cell membrane
3.2.9 Agarose gel electrophoresis for DNA fragmentation
3.3 Analysis of experimental results
3.3.1 Diameter of inhibition zone of Cu/H3BTC MOF
3.3.2 Minimum inhibitory concentration (MIC)
3.3.3 Time-kill assay
3.3.4 Scanning electron microscope observation
3.3.5 Confocal laser scanning microscopy
3.3.6 Integrity of cell membrane
3.3.7 Agarose gel electrophoresis for DNA fragmentation
3.4 Summary
Chapter 4 Facile and eco-benign synthesis of Au@Fe2O3 nanocomposite:efficientphotocatalytic, antibacterial and antioxidant agent
4.1 Experimental Materials
4.2 Experimental Methods
4.2.1 Preparation of Citrus sinensis fruit extract
4.2.2 Green synthesis of Fe2O3 seed nanoparticles
4.2.3 Synthesis of Au@Fe2O3 nanocomposite
4.3 Characterization
4.4 Evaluation of photocatalytic activity
4.5 Free radical scavenging analysis
4.6 Green synthesized Au@Fe2O3 for antimicrobial assay
4.6.1 Bacterial strains
4.6.2 Assessment of antibacterial activity
4.6.3 Estimation of minimum inhibitory concentration (MIC)
4.7 Analysis of Experimental results
4.7.1 Optical studies
4.7.2 XRD analysis
4.7.3 SEM and EDX studies
4.7.4 FTIR analysis
4.7.5 Zeta potential
4.7.6 Photocatalytic activity
4.7.7 DPPH free radical scavenging assay
4.8 Antibacterial activity
4.8.1 Mechanism of action of Au@Fe2O3 against bacteria
4.8.2 MIC of Au@Fe2O3
4.9 Summary
Chapter 5 Conclusion
5.1 Conclusion
5.2 Obtained objectives of research work
5.3 Further perspectives/suggestions
5.4 Novelty Statement
References
Acknowledgements
List of Publications
Introduction of the author
导师简介
附件
本文编号:3817657
【文章页数】:177 页
【学位级别】:博士
【文章目录】:
Abstract
摘要
Chapter 1 General Introduction
1.1 Introduction
1.2 History and development of nanomaterials
1.3 Types of nanomaterials
1.3.1 Composite-based metal organic hybrid nanomaterials
1.3.2 Carbon-based nanomaterials
1.3.3 Inorganic-based nanomaterials
1.3.4 Organic-based nanomaterials
1.3.4.1 Biopolymers
1.3.4.2 Synthetic polymers
1.4 Ligands for metal organic hybrid nanocomposites
1.5 Properties of metal organic hybrid nanocomposites
1.6 Metal organic hybrid nanomaterials as a biomimetic catalyst
1.7 Metalloenzyme
1.7.1 Laccase like mimic behavior
1.8 Metal organic hybrid nanomaterials in water treatment
1.9 Antimicrobial activity of Metal organic hybrid nanomaterials
1.10 Hybrid nanomaterials
1.11 Different method of synthesis for hybrid nanomaterials
1.12 Need for eco-benign synthesis
1.13 Applications of hybrid nanocomposite
1.13.1 Antibacterial activity of hybrid nanocomposite
1.13.2 Photocatalytic activity of hybrid nanocomposite
1.13.3 Antioxidant activity of hybrid nanocomposite
1.14 Aims and objectives
1.14.1 Objective 1
1.14.2 Objective 2
1.14.3 Objective 3
Chapter 2 Facile synthesis of laccase mimic CuH3BTC MOF for efficient dye degradation anddetection of phenolic pollutants
2.1 Experimental materials
2.2 Experimental methods
2.2.1 Preparation of Cu/H3BTC MOF
2.2.2 Characterization of Cu/H3BTC MOF
2.2.3 Effect of Cu/H3BTC MOF and laccase on AB-10B degradation
2.2.4 Catalytic stability of Cu/H3BTC MOF on AB-10B degradation
2.2.5 Laccase-like mimic activity of Cu/H3BTC MOF
2.2.6 Evaluation of catalytic stability of Cu/H3BTC MOF
2.2.7 Catalytic oxidation of epinephrine by Cu/H3BTC MOF and laccase
2.3 Analysis of experimental results
2.3.1 Laccase-like activity of Cu/H3BTC MOF
2.3.2 Structural characterization
2.3.3 Degradation of AB-10B at different time intervals
2.3.4 Degradation stability and recyclability of Cu/H3BTC MOF
2.3.5 Catalytic detection of phenolic pollutants by Cu/H3BTC MOF
2.3.6 Detection of epinephrine based on Cu/H3BTC MOF
2.3.7 Catalytic stability of Cu/H3BTC MOF
2.4 Summary
Chapter 3 Cu/H3BTC MOF as a potential antibacterial therapeutic agent against Staphylococcusaureus and Escherichia coli
3.1 Experimental Materials
3.2 Experimental Methods
3.2.1 Synthesis of Cu/H3BTC MOF
3.2.2 Bacterial strains and culture
3.2.3 Diameter of inhibition zone
3.2.4 Elucidation of minimum inhibitory concentration (MIC)
3.2.5 Time-kill assay
3.2.6 Scanning electron microscopy(SEM)
3.2.7 Confocal laser scanning microscopy (CLSM) study
3.2.8 Integrity of cell membrane
3.2.9 Agarose gel electrophoresis for DNA fragmentation
3.3 Analysis of experimental results
3.3.1 Diameter of inhibition zone of Cu/H3BTC MOF
3.3.2 Minimum inhibitory concentration (MIC)
3.3.3 Time-kill assay
3.3.4 Scanning electron microscope observation
3.3.5 Confocal laser scanning microscopy
3.3.6 Integrity of cell membrane
3.3.7 Agarose gel electrophoresis for DNA fragmentation
3.4 Summary
Chapter 4 Facile and eco-benign synthesis of Au@Fe2O3 nanocomposite:efficientphotocatalytic, antibacterial and antioxidant agent
4.1 Experimental Materials
4.2 Experimental Methods
4.2.1 Preparation of Citrus sinensis fruit extract
4.2.2 Green synthesis of Fe2O3 seed nanoparticles
4.2.3 Synthesis of Au@Fe2O3 nanocomposite
4.3 Characterization
4.4 Evaluation of photocatalytic activity
4.5 Free radical scavenging analysis
4.6 Green synthesized Au@Fe2O3 for antimicrobial assay
4.6.1 Bacterial strains
4.6.2 Assessment of antibacterial activity
4.6.3 Estimation of minimum inhibitory concentration (MIC)
4.7 Analysis of Experimental results
4.7.1 Optical studies
4.7.2 XRD analysis
4.7.3 SEM and EDX studies
4.7.4 FTIR analysis
4.7.5 Zeta potential
4.7.6 Photocatalytic activity
4.7.7 DPPH free radical scavenging assay
4.8 Antibacterial activity
4.8.1 Mechanism of action of Au@Fe2O3 against bacteria
4.8.2 MIC of Au@Fe2O3
Chapter 5 Conclusion
5.1 Conclusion
5.2 Obtained objectives of research work
5.3 Further perspectives/suggestions
5.4 Novelty Statement
References
Acknowledgements
List of Publications
Introduction of the author
导师简介
附件
本文编号:3817657
本文链接:https://www.wllwen.com/projectlw/hxgylw/3817657.html
最近更新
教材专著