当前位置:主页 > 理工论文 > 轻工业论文 >

不同干燥方法和预处理对果蔬脆片品质特性影响研究

发布时间:2020-10-27 11:28
   果蔬脆片已成为食品工业中的新兴力量,逐渐引起消费者的兴趣。在已有果蔬脆片生产技术中,压差闪蒸联合干燥(DIC)是一种具有特殊优势的新型有效干燥技术,其生产的果蔬脆片产品具有多孔的结构和酥脆的口感。此外,DIC的生产的产品还具有其独特的风味、色泽,良好的复水性、贮藏性以及较低的生产成本。目前,DIC技术已广泛适用于水果和蔬菜的干燥。本论文研究了DIC和热烫辅助DIC(B+DIC)对8种果蔬脆片质构、体积比、色泽和微观结构的影响,结果表明:与单一DIC处理相比,采用热烫辅助DIC干燥(B+DIC)能显著改变果蔬脆片的品质。DIC干燥的芒果脆片表现出明显的膨胀效果,具有较低硬度(26.12N)的同时具有较高的脆度(10.43),与之相比,经过B+DIC处理的芒果脆片脆度值更高(14.66),膨胀效果更好。通过芒果脆片(0.46mL)的体积比(VR)和杏鲍菇的体积比(0.36mL)也能反映其明显的膨胀结构。在B+DIC处理下,芒果脆片(30.40)和胡萝卜脆片(42.87)与鲜样相比具有较大的总体色差值(ΔE)。而在DIC干燥的苹果、胡萝卜、杏鲍菇(KOM)和马铃薯产品中测得最大的总色差值。然而,在微观结构方面,它们均具有良好的蜂窝状微观结构状态和良好的表观膨胀度。此外,经热烫后,杏鲍菇样品体积均会发生收缩,B+DIC干燥的胡萝卜脆片微观孔隙和膨胀度较DIC干燥样品明显增加。通过将不同预处理与DIC干燥进行联合,探究联合干燥对苹果,菠萝,胡萝卜和杏鲍菇(KOM)的影响。在热烫,冷冻和渗透脱水联合压差闪蒸(B+Fz+OD+DIC)的干燥工艺下,预处理后胡萝卜和杏鲍菇具有最大的水分损失和固形物增量。冷冻联合DIC(Fz+DIC),杏鲍菇的总色差(ΔE)最大。渗透联合DIC(OD+DIC)处理的胡萝卜片具有最大的VR。B+Fz+OD+DIC处理和DIC处理的脆片可以得到最高的感官评分(色泽,风味和质地)。B+Fz+OD+DIC处理的菠萝片具有最小的硬度和脆度。OD+DIC处理的原料得到了最理想的体积膨胀效果。基于上述结果,本研究得出结论,B+Fz+OD+DIC是能够使四种原料的产品达到较好质地,微观结构,体积比,颜色和感官评价的最佳干燥方式。对苹果片和桃片在热风干燥(HAD)不同温度(50℃,60℃,70℃)和真空冷冻干燥下的干燥动力学,干燥特性,如水分比(MR),干燥时间,干燥速率(DR)和水分含量(g/g db)的变化进行研究分析得到,两种干燥方法的干燥过程基本上均为降速模式。另一方面,吸湿研究结果表明苹果和桃的HAD和FD产品的吸附和解吸均显著增加。苹果片和桃片的D_(eff)值分别为2.85×10~(-14)至9.73×10~(-14) m~2/s和4.27×10~(-14)至8.16×10~(-15) m~2/s。随水分含量(db)的降低,两种干燥方式下的D_(eff)值均逐渐增加到最大值然后下降。与FD的苹果片和桃片相比,高温会导致苹果片和桃片更大的D_(eff)值。70℃热风干燥是最能提高苹果片和桃片干燥效率的方式。探究了热风干燥(50℃,60℃和70℃)和真空冷冻干燥(FD)对苹果片和桃片营养物质和芳香化合物的影响。结果表明,高温导致苹果和桃的总酚含量下降(p0.05)。同样,高温会导致苹果片Vc的降解,然而桃片显示出了与苹果片不同的结果,即高温增加了Vc的含量。另一方面,HAD和FD的苹果片和桃片的DPPH,ABTS和FRAP活性差异不显著。HAD(50℃,60℃和70℃)和FD的苹果片和桃片的挥发性特征成分和芳香化合物采用顶空固相微萃取结合气相色谱-质谱(HS-SPME/GC-MS)和E-nose(电子鼻)进行测定并分析。GC-MS结果表明,在苹果片和桃片中共鉴定出132种芳香化合物,其中1,3-辛二醇为HAD苹果片的主要香气成分,其累计贡献率超过75%。通过GC-MS数据的聚类分析和E-nose数据的主成分分析得到,苹果片和桃片主要分为两组:A组(A50,A60,A70和AF)和B组(P50,P60,P70和PF)。A组和B组之间的醇,酸和芳香族化合物的含量存在显着差异。E-nose结合GC-MS是一种更加准确,快速地检测苹果片和桃干片在不同处理条件下主要风味物质差异的方法。
【学位单位】:中国农业科学院
【学位级别】:博士
【学位年份】:2019
【中图分类】:TS255.3
【文章目录】:
摘要
ABSTRACT
LIST OF ABBREVIATION
CHAPTER1 INTRODUCTION
    1.1 Background
    1.2 DIC equipment and fundamental aspect
        1.2.1 DIC equipment
        1.2.2 Instant controlled pressure drop(DIC)reactor
        1.2.3 Explosion puffing drying(EPD)or instant controlled pressure drop drying(ICPDD)
    1.3 Instant Auto-vaporization
        1.3.1 General approach
    1.4 Researches on DIC and industrial applications
        1.4.1 Restructuring
        1.4.2 Decontamination
        1.4.3 Extraction
    1.5 Combination drying with DIC
        1.5.1 Combination hot air drying with DIC
        1.5.2 Combination vacuum freezing drying with DIC
        1.5.3 Combination vacuum drying with DIC
        1.5.4 Combination infrared drying with DIC
        1.5.5 DIC with different pre-treatments
    1.6 Effects of DIC on qualities of Fruits & vegetables products
        1.6.1 Texture
        1.6.2 Microstructures
        1.6.3 Colour
        1.6.4 Sensorry evalution
    1.7 Hot air and freeze drying
        1.7.1 Hot air-drying(HAD)
        1.7.2 Freeze drying(FD)
            1.7.2.1 General consideration of FD
        1.7.3 Attributes of HAD and FD drying methods
    1.8 The main objectivies were investigated in the present study are:
CHAPTER2 EFFECTS OF INSTANT CONTROLLED PRESSURE DROP(DIC) DRYING ON THE TEXTURE AND TISSUE MORPHOLOGY OF FRUITS AND VEGETABLES
    2.1 Introduction
    2.2 Materials and methods
        2.2.1 Materials prepration
        2.2.2 Moisture content
        2.2.3 Drying curve
        2.2.4 Blanching(B)treatment
        2.2.5 Instant controlled pressure drop(DIC)treatment
        2.2.6 Volume ratio
        2.2.7 Colour
        2.2.8 Texture
        2.2.9 Scanning electron microscopy(SEM)
        2.2.10 Statistical analysis
    2.3 Results and discussion
        2.3.1 Moisture content of different morpholocal fruit and vegetable chips dried by DIC and B+DIC
        2.3.2 Texture analysis of different morpholoccal fruit and vegetable chips dried by DIC and B+DIC
        2.3.3 Colour determination of selected fruit and vegetable chips dried by DIC and B-DIC
        2.3.4 Volume ratio of different morphological fruit and vegetable chips dried by DIC and B+DIC
        2.3.5 Scanning electronic microscopy(SEM) of different morphological fruit and vegetable chips dried by DIC and B+DIC
    2.4 Conclusion
CHAPTER3 EFFECTS OF DIC ASSISTED WITH DIFFERENT PRE-TREATMENTS ON ORGANOLEPTIC QUALITY OF FOUR FRUITS AND VEGETABLES WITH REPRESENTATIVE TISSUES AND CELL MORPHOLOGY
    3.0 Practical application
    3.1 Introduction
    3.2 Materials and methods
        3.2.1 Materials preparation
        3.2.2 Blanching(B)
        3.2.3 Freezing(Fz)
        3.2.4 Osmotic dehydration(OD)
        3.2.5 Blanching with freezing(B+Fz) and Blanching,freezing with osmotic dehydration(B+Fz+OD)
        3.2.6 WL,SG,WR,and DEI
        3.2.7 Instant Control Pressure Drop(DIC)
        3.2.8 Texture
        3.2.9 Volume ratio
        3.2.10 Colour
        3.2.11 Scanning electron microscopy(SEM)
        3.2.12 Sensory evaluation
        3.2.13 Statistical analysis
    3.3 Results and discussion
        3.3.1 Effects of OD on the moisture content,weight reduction,solid gain,water loss,and dehydration efficiency index
        3.3.2 Effects of pre-treatments with DIC on the colour of fruit and vegetable chips
        3.3.3 Texture(hardness,crispness)and the volume ratio
        3.3.4 Sensory evaluation
        3.3.5 Microstructures
    3.4 Conclusion
CHAPTER4 EFFECT OF HOT AIR AND FREEZE DRYING ON DRYING CHARACTERISTICS OF APPLE AND PEACH FRUITS
    4.1 Introduction
    4.2 Materials and methodology
        4.2.1 Materials and preparation
        4.2.2 Hot air drying(HAD)
        4.2.3 Freeze drying(FD)
        4.2.4 Water activity(Aw)
        4.2.5 Drying rate curve
        4.2.6 Dynamic vapour sorption(DVS)
        4.2.7 Diffusion coefficient
        4.2.8 Drying kinetics
        4.2.9 Statistical analysis
    4.3 Result and discussion
        4.3.1 Water activity of apple and peach chips dried by HAD-(50℃,60℃,70℃) and FD
        4.3.2 Moisture content and drying time of apple and peach chips dried by HAD-(50℃,60℃,70℃) and FD
        4.3.3 Drying rate vs.drying time of apple and peach chips dried by HAD-(50℃,60℃,70℃)and FD
        4.3.4 Drying rate vs.moisture content of apple and peach chips dried by HAT-(50℃,60℃,and70℃) and FD
        4.3.5 Moisture ratio vs.drying time of apple and peach chips dried by HAD-(50℃,60℃,70℃) and FD
        4.3.6 Dynamic vapour sorption of apple and peach chips dried by HAD-(50℃,60℃,70℃) and FD
        4.3.7 Determination of effective moisture diffusivity of apple and peach fruit chips dried by HAD-(50℃,60℃,70℃) and FD drying methods
    4.4 Conclusion
CHAPTER5 EFFECT OF HOT AIR AND FREEZING DRYING ON NUTRITION AND AROMA COMPOUNDS OF APPLE AND PEACH FRUITS
    5.1 Introduction
    5.2 Materials and methods
        5.2.1 Materials preparation
        5.2.2 Methods
        5.2.3 Quantification of total phenolic compounds(TPC)and extraction
        5.2.4 Determination of vitamin C(mg Vc/100g)
        5.2.5 Antioxidant activity
        5.2.6 ABTS Radical-Scavenging Activity Assay
        5.2.7 DPPH Radical-Scavenging Activity Assay
        5.2.8 Ferric-Reducing Ability of Plasma Assay(FRAP)
        5.2.9 Gas chromatic-mass spectrometry(GC-MS),and HS-SPME conditions
        5.2.10 GC-MS analysis
        5.2.11 Qualitative analysis
        5.2.12 Electronic nose(E-nose)
        5.2.13 Statistical analysis
    5.3 Result and discussion
        5.3.1 The determination of TPC and vitamin C content
        5.3.2 The determination of antiocidant activity
        5.3.3 Volatile profile of apple and peach dried chips characterized by qualitative analysis of HS-SPME/GC–MS
        5.3.4 Cluster analysis(CA)
        5.3.5 E-nose response
        5.3.6 Princeple component analysis(PCA)
        5.3.7 E-nose sensors response
    5.4 Conclusion
CHAPTER6 OVER ALL CONCLUSION
    6.1 Conclusion
    6.2 Innovation points
BIBLIOGRAPHY
ACKNOWLEDGEMENT
RESUME
FUNDDING


本文编号:2858462

资料下载
论文发表

本文链接:https://www.wllwen.com/projectlw/qgylw/2858462.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b48fc***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com