当前位置:主页 > 管理论文 > 企业管理论文 >

个性化推荐算法在汽车销售领域的应用研究

发布时间:2019-01-02 07:17
【摘要】:随着电子商务的迅速发展,个性化推荐系统作为一种新的智能信息服务方式,越来越得到用户的亲睐和企业的重视。同时,作为全球第一大汽车消费国,汽车已经成为日常生活中比较普及的交通工具,由于其参数众多,用户迫切需要个性化推荐系统帮助其进行购买决策。如何将个性化推荐系统成功应用于汽车电子商务,是摆在汽车销售商面前的重大理论和实践课题,也是本文研究的目的和要解决问题的重点所在。论文在对个性化推荐系统及其常用推荐算法进行详细介绍和对比的基础上,分别对新、老用户两类不同人群提出了不同的推荐算法和推荐模型:第一,对新用户提出新的混合个性化推荐算法:论文采用用户主观评分矩阵和汽车客观评分矩阵相结合的办法,构建用户客观评分矩阵,以此来缓解用户评分的稀疏性,在此基础上通过用户偏好关系网络抽取用户之间的相似性,并用“专家意见”代替了传统的评分预测,在保证推荐车型满足用户偏好的基础上,推荐性能最高的车型;第二,对老用户提出一种新的个性化推荐模型:针对老用户研究、探讨了用户满意度的影响,提出一个基于用户满意度的模型,通过综合考虑历史信息和浏览信息,使得推荐算法的准确率较普通协同过滤算法更高。
[Abstract]:With the rapid development of electronic commerce, personalized recommendation system, as a new intelligent information service, has been paid more and more attention by users and enterprises. At the same time, as the largest automobile consumer in the world, automobile has become a popular vehicle in daily life. Because of its numerous parameters, users urgently need personalized recommendation system to help them to make purchase decisions. How to successfully apply personalized recommendation system to automobile electronic commerce is an important theoretical and practical subject in front of automobile dealers. It is also the purpose of this paper and the key point to solve the problem. On the basis of the detailed introduction and comparison of the personalized recommendation system and its common recommendation algorithms, this paper presents two different recommendation algorithms and models for the new and old users: first, This paper proposes a new hybrid personalized recommendation algorithm for new users: this paper uses the combination of user subjective score matrix and vehicle objective score matrix to construct user objective score matrix to alleviate the sparsity of user score. On this basis, the similarity between users is extracted through the user preference relationship network, and the "expert opinion" is used to replace the traditional scoring prediction. On the basis of ensuring that the recommended models meet the user preferences, the best models are recommended. Secondly, a new personalized recommendation model for old users is proposed. According to the research of old users, the influence of user satisfaction is discussed, and a model based on user satisfaction is put forward, which considers historical information and browsing information synthetically. The accuracy of recommendation algorithm is higher than that of common collaborative filtering algorithm.
【学位授予单位】:上海应用技术学院
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:F426.471;F274

【相似文献】

相关期刊论文 前10条

1 许逸格;张可;柯朦;谢倩倩;章文;;一种基于循环回归的推荐算法[J];华中科技大学学报(自然科学版);2013年S2期

2 刘洋;王育才;;基于并行优化的免疫推荐算法[J];科学技术与工程;2011年29期

3 许飒爽;曹健;;面向服务环境的服务个性化推荐算法[J];计算机集成制造系统;2011年11期

4 蒋盛益;杨博泓;吴美玲;;基于快速社区检测的协同过滤推荐算法[J];广西大学学报(自然科学版);2013年06期

5 秦继伟;郑庆华;郑德立;田锋;;结合评分和信任的协同推荐算法[J];西安交通大学学报;2013年04期

6 王炎斌;管林挺;;基于移动互联网订餐平台的食品推荐算法[J];科技视界;2013年09期

7 王志松;张晶磊;;基于页面聚类的个性化推荐算法研究[J];燕山大学学报;2007年03期

8 蔡淑琴;林森;梁凯春;;基于关联规则的知识推荐算法[J];武汉理工大学学报(信息与管理工程版);2007年03期

9 姚忠;吴跃;常娜;;集成项目类别与语境信息的协同过滤推荐算法[J];计算机集成制造系统;2008年07期

10 成桂兰;刘旭东;陈德人;;基于混合聚类的个性化推荐算法[J];武汉理工大学学报(信息与管理工程版);2011年03期

相关会议论文 前10条

1 王韬丞;罗喜军;杜小勇;;基于层次的推荐:一种新的个性化推荐算法[A];第二十四届中国数据库学术会议论文集(技术报告篇)[C];2007年

2 唐灿;;基于模糊用户心理模式的个性化推荐算法[A];2008年计算机应用技术交流会论文集[C];2008年

3 秦国;杜小勇;;基于用户层次信息的协同推荐算法[A];第二十一届中国数据库学术会议论文集(技术报告篇)[C];2004年

4 周玉妮;郑会颂;;基于浏览路径选择的蚁群推荐算法:用于移动商务个性化推荐系统[A];社会经济发展转型与系统工程——中国系统工程学会第17届学术年会论文集[C];2012年

5 苏日启;胡皓;汪秉宏;;基于网络的含时推荐算法[A];第五届全国复杂网络学术会议论文(摘要)汇集[C];2009年

6 梁莘q,

本文编号:2398173


资料下载
论文发表

本文链接:https://www.wllwen.com/qiyeguanlilunwen/2398173.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f7d85***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com