当前位置:主页 > 社科论文 > 逻辑论文 >

高维数据下多元逻辑回归分析中的模型选择

发布时间:2021-08-10 04:16
  高维数据分析已成为在许许多多科学领域广受关注的热点,包括基因组学、经济学以及健康科学等等。例如,随着基因组学的进步,通过微阵列技术,可以同时获得成千上万个基因表达数据,然而可供研究的样本个数由于时间和资金的限制,一般只有几百个,这种数据结构被称为小-n-大-p的结构。多元逻辑回归,又叫做多类别逻辑回归,是一种多类别分类学习方法,能够同时预测所观测到的数据点属于多个类别的概率。一个常见的理论假设是稀疏性假设,也即是说,在搜集到的大量特征中,只有一小部分真正对预测起作用,这个假设在现实生活中也能找到经验支持。有了稀疏性假设,正则化方法不仅可以提高统计精确度,还可以增加模型的可解释性,以及减小计算复杂度。Group lasso是lasso的一种推广形式。稀疏group lasso(SGL)将lasso和group lasso结合起来,因此能得到组内组间都稀疏的解。但是,多元逻辑回归中的lasso类算法需要提供理论上找到最优特征子集的支持。因此,本文提出,结合EBIC准则对多元逻辑回归模型进行模型选择。并且还证明了模型选择的一致性。最后,通过数值模拟来评估所提出方法的效果。并且还在亚马逊评论作... 

【文章来源】:上海交通大学上海市 211工程院校 985工程院校 教育部直属院校

【文章页数】:61 页

【学位级别】:硕士

【文章目录】:
摘要
abstract
主要符号对照表
第一章 背景介绍和文献综述
第二章 多元逻辑回归模型
    2.1 模型的导出
    2.2 参数矩阵和对数似然函数
    2.3 得分函数和负海森矩阵
    2.4 本章小结
第三章 多元逻辑回归的EBIC准则及其一致性
    3.1 多元逻辑回归的EBIC准则
    3.2 模型假设及EBIC准则的一致性
    3.3 本章小结
第四章 定理和引理的证明
    4.1 辅助引理的证明
    4.2 主要定理的证明
    4.3 本章小结
第五章 数值模拟和实例分析
    5.1 数值模拟
    5.2 实例分析:亚马逊评论作者分类
    5.3 本章小结
第六章 全文总结
    6.1 主要工作与创新点
    6.2 后续研究工作
附录A 数值模拟:代码
附录B 实例分析:代码
参考文献
致谢



本文编号:3333440

资料下载
论文发表

本文链接:https://www.wllwen.com/shekelunwen/ljx/3333440.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c65da***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com