数列规则学习的发展特点及神经机制
本文选题:规则学习 + 儿童 ; 参考:《西南大学》2014年硕士论文
【摘要】:规则学习在人类认知中扮演重要角色,可以帮助人们概括一般法则,把握事物本质。以往关于规则学习的研究主要集中于语句型任务,且多采用注意偏向即习惯化的研究范式考察婴儿期的规则学习能力的发展。尽管不少研究证明了年幼婴儿甚至动物都能学习规则,但这些研究中所考察的规则学习主要集中于语法规则,即使是非言语刺激,其规则也十分简单,主要认知过程是让幼儿辨别两种刺激序列(一种有规则,一种无规则)问的差异。婴儿在习惯化(规则学习)阶段可以抽象出刺激的内在结构,即他们可能发现每个刺激首音与末音是相同的,这就是婴儿识别出的模式或者是规则,这一规则学习的主要认知过程是模式识别。而在现实环境中,每天接触的信息量巨大,要从中获取规则不仅仅是靠辨别有无规则就能获得的,除了语言规则之外,在其它学习任务中也涉及规则习得的过程,且大多是抽象规则。不仅需要模式识别,同时也需要运用假设检验和归纳推理法来获取这些规则。本研究采用的是改进后的Brixton测试,给被试呈现了一个钟表形状的图片,图片包含了12个圆圈,其中一个圆圈是蓝色的,其余的都是白色。蓝色的圆圈会移动,移动的位子可能是根据某种数列规则的,也可能是随意移动。被试的任务是判断蓝色圆圈的移动是否是有规律的。数列的规则学习主要包括规则获得和外推两个环节,前者的实质就是规则归纳过程,它包括假设生成和假设确认两个子过程;后者则涉及到规则的应用。规则获取过程包含了规则搜索和规则发现这两个规则学习中不可或缺的部分,幼儿能否成功发现规则的关键在于此。因此,本研究将继续考察参与规则获取的大脑区域,特别是规则发现的瞬间激活哪些脑区。另外,在现实生活中,还有一种与规则学习联系紧密的部分:规则违背。在一系列规则呈现之前或之后,变频地出现不符合这一规则的刺激,被试能否迅速地识别出?并且,这一认知过程是由哪个脑区负责也尚不清楚。本研究对个体的规则学习,特别是规则获取能力和这一过程的脑机制做了探究。本研究分为两个部分:第一部分包括实验一和实验二,主要探讨处于形式运算阶段之前的幼儿是否可以通过归纳概括这一高级认知过程,发现隐藏于刺激序列后面的抽象规则,以及这种能力有何年龄发展特征等问题;第二部分为实验三,采用功能性磁共振成像(fMRI)技术来研究规则学习的各个阶段,特别是规则发现阶段的神经机制。 研究一是对幼儿数列规则获取能力进行研究。研究目的:(1)揭示学龄前幼儿规则学习的年龄特征,重点考察学龄前幼儿规则发现能力的年龄特点,以及不同复杂程度的的规则发现成绩差异:(2)考察无数字信息时,儿童获取数列规则的能力。研究结果:(1)年龄超过4周岁的儿童,能获取绝大部分(大于80%)的数列规则;(2)年龄超过5周岁的儿童,能获取大部分(大于60%)的数列规则;(3)幼儿若成功获取了某个规则的样例,其在规则搜索阶段所尝试的项目数是相似的:(4)幼儿在完成无数字信息的任务中,计算能力与规则获取能力成正相关。结论:(1)学前儿童数列规则学习能力发展迅速;(2)数字信息可能对幼儿的规则获取产生了干扰作用。 研究二是考察规则学习各个阶段的神经机制。研究目的:(1)考察数列规则学习过程的脑激活区域,着重考察规则发现的瞬间脑区活动情况;(2)考察参与规则违背的脑区;(3)探究数列规则学习感兴趣区(ROI)。研究结果:(1)与规则搜索阶段相比,规则发现阶段激活了多个脑区。在简单规则条件下,包括额内侧回(BA10)、左侧额中回(BA11)、右侧额下回(BA47)、左侧海马旁回(BA35)、右侧缘上回(BA40)、双侧扣带回(BA24)、双侧顶下小叶(BA39))等区域得到激活:复杂规则条件下,激活了如下区域:额内侧回(BA9)、扣带回(BA24)、右侧缘上回(BA40)、双侧顶下小叶(BA40)和双侧颞叶区域(BA20);(2)规则跟随阶段减去规则违背阶段,激活脑区包括:双侧额内侧回(BA10)、左侧额中回(BA11)、双侧扣带回(BA31)还有左侧的楔前叶;复杂规则条件下,激活脑区有:双侧额内侧回(BA10)、左侧额中回(BA11)、左侧扣带回(BA31)、双侧海马旁回(BA28)、双侧梭状回(BA37)区域;(3)规则违背阶段减去规则跟随阶段,简单条件下,左侧额上回(BA6),左侧额内侧回(BA6),双侧额中回(8A6,双侧额下回(BA47)和左侧顶叶部分(BA7)得到激活;复杂规则下,激活了右侧顶下小叶(BA40);(4)在感兴趣区——眶额皮层背部,时间-信号强度在规则跟随阶段最低;在背外侧前额叶,规则搜索阶段的信号强度最高,规则跟随阶段强度最低;在颞中回,规则搜索阶段的时间-信号强度最弱;在顶上小叶,时间-信号强度在规则跟随阶段弱于其他三个阶段。结论:(1)规则搜索和规则发现两个阶段的大脑活动区域与其他阶段是不相同的,背外侧前额叶中部(mid-DLPFC)在规则搜索阶段比规则发现阶段激活强度更大,而包括左侧腹内侧眶额皮层(mOFC),双侧顶下小叶和右侧颞中回下部的额-顶-颞叶脑区,在规则发现阶段的激活强度大于规则搜索阶段;(2)而在规则违背阶段继续导致眶额皮层背部和顶上小叶地激活。
[Abstract]:Regular learning plays an important role in human cognition , which can help people to generalize the general rule and grasp the essence of the matter .
This study is divided into two parts : the first part includes the experimental one and the experiment two , which mainly discusses whether the child before or after a series of rules is in charge of the stimulation of the rule , whether the test can be quickly identified ? And , this study can summarize the advanced cognitive process by induction , discover the abstract rules behind the stimulation sequence , and the age development characteristics of this ability .
The second part is Experiment 3 . The functional magnetic resonance imaging ( MRI ) technique is used to study the various stages of regular learning , especially the neural mechanism of the rule discovery phase .
The aim of this study is to study the age characteristics of preschool children ' s regular learning .
( 2 ) A majority ( greater than 60 % ) of the series of rules can be obtained for children older than 5 years of age ;
( 3 ) If a child successfully acquired a sample of a certain rule , the number of items attempted in the rule search phase is similar : ( 4 ) The ability of the child to compute the ability to acquire the rule is positively correlated with the rule acquisition ability in the task of completing the non - digital information . Conclusion : ( 1 ) The preschool children ' s regular learning ability develops rapidly ;
( 2 ) Digital information may have an interference effect on children ' s rule acquisition .
Objective : ( 1 ) To investigate the brain activation region of several regular learning processes , and to focus on the temporal brain region activity of the regular learning process .
( 2 ) investigating the brain area involved in the breach of the rules ;
Results : ( 1 ) In comparison with the rule search period , multiple brain regions were activated in the rule discovery phase . Under the simple rule condition , the regions were activated : medial frontal gyrus ( BA10 ) , left frontal gyrus ( BA11 ) , right frontal gyrus ( BA47 ) , left side hippocampal gyrus ( BA35 ) , right margin gyrus ( BA40 ) , bilateral button gyrus ( BA24 ) , bilateral top sublobular ( BA39 )) and other regions . The following areas were activated : frontal medial gyrus ( BA9 ) , button ulate gyrus ( BA24 ) , right margin upper gyrus ( BA40 ) , bilateral superior inferior leaflet ( BA40 ) and bilateral temporal lobe area ( BA20 ) ;
( 2 ) the rule follow - up period minus the rule violation phase , the activation of the brain region includes : bilateral frontal medial gyrus ( BA10 ) , left frontal gyrus ( BA11 ) , bilateral buckle back ( BA31 ) and left wedge anterior leaflet ;
Under complex rule conditions , the brain area was activated : bilateral frontal medial gyrus ( BA10 ) , left frontal gyrus ( BA11 ) , left button gyrus ( BA31 ) , bilateral hippocampal gyrus ( BA28 ) and bilateral fusiform gyrus ( BA37 ) ;
( 3 ) The rule follows the rule - follower stage , the left frontal gyrus ( BA6 ) , the left frontal gyrus ( BA6 ) , the bilateral frontal gyrus ( 8A6 ) , the bilateral frontal gyrus ( BA47 ) and the left parietal part ( BA7 ) are activated under simple conditions .
Under complex rule , the right lower leaflet was activated ( BA40 ) .
( 4 ) The time - signal intensity is the lowest in the region of interest _ orbital frontal cortex ;
In the front frontal lobe , the signal intensity of the rule search phase is the highest , and the rule follow - up phase strength is the lowest ;
In the temporal gyrus , the time - signal intensity of the rule search phase is the weakest ;
Conclusion : ( 1 ) The rules search and rule find that the regions of brain activity in the two stages are different from those in other stages .
( 2 ) In the rule violation phase , it continues to result in the activation of the back and top of the frontal cortex .
【学位授予单位】:西南大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:B842
【参考文献】
相关期刊论文 前9条
1 邱迎伟;江桂华;苏欢欢;马晓芬;李黎明;田军章;张雪林;;海洛因成瘾患者眶额叶皮层功能连接异常与决策能力缺失的关系[J];南方医科大学学报;2013年08期
2 ;The role of the DLPFC in inductive reasoning of MCI patients and normal agings:An fMRI study[J];Science in China(Series C:Life Sciences);2009年08期
3 钟宁;梁佩鹏;秦裕林;吕胜富;杨延辉;李坤成;;数据驱动的科学发现的神经机制:一项fMRI研究[J];中国科学(C辑:生命科学);2009年03期
4 SHEN WangBing;LUO Jing;LIU Chang;YUAN Yuan;;New advances in the neural correlates of insight: A decade in review of the insightful brain[J];Chinese Science Bulletin;2013年13期
5 张庆林,徐展;小学儿童规则发现的类比迁移研究[J];心理科学;2000年02期
6 李红,陈安涛,冯廷勇,李富洪,龙长权;个体归纳推理能力的发展及其机制研究展望[J];心理科学;2004年06期
7 李富洪;李红;曹碧华;陈安涛;龙长权;;视觉归纳概括的加工机制与策略[J];心理科学;2008年02期
8 马晓清;冯廷勇;李宇;李红;;从知觉分心任务看儿童类比推理能力的发展[J];心理学报;2008年09期
9 梅杨;梁佩鹏;吕胜富;杨延辉;钟宁;李坤成;;图形型归纳推理的神经机制:一项fMRI研究[J];心理学报;2010年04期
,本文编号:1937768
本文链接:https://www.wllwen.com/shekelunwen/xinlixingwei/1937768.html