基于磁偶极子模型的三维定位技术研究
本文关键词:基于磁偶极子模型的三维定位技术研究 出处:《西南科技大学》2017年硕士论文 论文类型:学位论文
更多相关文章: 磁偶极子理论 电磁定位 非线性方程组的求解算法 数据采集LabVIEW 软件平台
【摘要】:基于磁偶极子模型对目标的定位是一种具有高精度、多维度、无视线问题的定位技术,也称为电磁定位技术。它不仅能定位出目标点的空间位置信息(x,y,z),而且还能定位出目标点的姿态角(α,β,γ)。因此该技术广泛应用于医疗手术导航、移动设备导航、机器人、虚拟实现等领域。根据对国内外大量文献与产品研究,电磁定位技术在国外已经有相关成熟的产品,而反观国内现状,还仅仅出于理论研究与实验探索阶段。本文的工作内容主要分为四个方面:(1)首先,本文利用磁偶极子理论建立起电磁定位计算模型,再根据法拉第电磁感应定律建立起接收传感器的感应电动势与定位目标点的位置和姿态6个未知参数之间的关系。由于磁偶极子模型在目标点距离发射源比较远时,模型才能成立,所以本文就定位目标点到发射源的距离对定位的误差做出了分析。(2)其次,为了将电磁定位技术的工程应用问题转换为数学问题。本文对求解电磁定位非线性方程组的相关算法进行了研究,包括高斯-牛顿法、L-M算法、遗传算法。利用数值分析软件MATLAB对以上算法进行了仿真分析。(3)再次,设计一个电磁定位系统,同时完成了该系统中有关的硬件电路与软件程序的设计。该系统大体分为三个部分,分别为发射系统、接收系统、数据处理系统。发射系统主要作用是建立起定位系统所需的磁场分布环境;接收系统的主要功能是把定位目标点的电磁信号转换为有用的电压信号;数据处理系统的主要功能是采集接收信号与参考信号,并利用NI公司的LabVIEW软件平台对采集的信号进行数字滤波等处理。(4)最后,搭建了实验平台并进行了测试。包括对目标点的电压波形的采集与显示,以及采集信号数字滤波前后的波形显示。对测试值与真实值进行了比较,当发射信号频率为1kHz,目标点距离在12厘米到70厘米内时,位置平均误差在3.5厘米内,姿态角平均误差在10度内,以及对误差的来源做出了详细的描述。
[Abstract]:The location of the target based on the magnetic dipole model is a positioning technique with high precision, multi dimension and no line of sight. It is also called electromagnetic positioning technology. It can not only locate the spatial location information of the target point (x, y, z), but also can locate the attitude angle of the target point (alpha, beta, gamma). Therefore, the technology is widely used in the fields of medical operation navigation, mobile equipment navigation, robot, virtual realization and so on. According to a large number of documents and products at home and abroad, electromagnetic localization technology has already had mature products in other countries. This thesis is mainly divided into four aspects: (1) firstly, based on the theory of magnetic dipole establish electromagnetic positioning calculation model, then established based on Faraday's law of electromagnetic induction between the position and attitude of receiving sensor, inductive electromotive force and the location of the target point 6 unknown parameters of the relationship between. Since the magnetic dipole model is far away from the target source at the target point, the model can be established. Therefore, the location error is analyzed from the location of the target point to the launch source. (2) Secondly, in order to convert the engineering application of electromagnetic positioning technology into a mathematical problem. In this paper, the relevant algorithms for solving the nonlinear equations of electromagnetic positioning are studied, including Gauss Newton, L-M algorithm and genetic algorithm. The above algorithm is simulated and analyzed by using the numerical analysis software MATLAB. (3) once again, an electromagnetic positioning system is designed, and the design of the related hardware and software programs in the system is completed. The system is divided into three parts, which are the transmitting system, the receiving system and the data processing system. The main function of launch system is to establish positioning system of magnetic field distribution required; the main function is to convert the receiving system of the electromagnetic signal into a voltage signal the location of the target point is useful; the main function of the data processing system is to collect the received signal and the reference signal, and the digital filter to process the signal by using the LabVIEW software platform NI company. (4) at last, the experimental platform was built and tested. It includes the acquisition and display of the voltage waveform of the target point, and the waveform display before and after the digital filtering of the acquisition signal. The test value is compared with the real value. When the transmitting frequency is 1kHz, and the distance between the target points is from 12 cm to 70 cm, the position average error is within 3.5 cm, the average error of the attitude angle is within 10 degrees, and the source of the error is described in detail.
【学位授予单位】:西南科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O441
【相似文献】
相关期刊论文 前10条
1 吴旭东;侯文生;郑小林;彭承琳;;磁偶极子的定位模型及实验验证[J];仪器仪表学报;2008年02期
2 仲维畅;磁偶极子链的断裂和表面磁极的显现[J];无损检测;2004年06期
3 李静;胡先权;;微小电流环与磁偶极子[J];重庆师范大学学报(自然科学版);2010年04期
4 刘志环;晏光辉;余虹;姜东光;;磁偶极子的远场[J];物理与工程;2006年04期
5 张若洵;杨洋;;磁偶极子的远场[J];河北北方学院学报(自然科学版);2007年04期
6 库建刚;陈辉煌;何逵;;磁偶极子力在弱磁选过程中的作用[J];金属矿山;2013年12期
7 王光辉;朱海;郭正东;;潜艇磁偶极子近似距离条件分析[J];海军工程大学学报;2008年05期
8 张朝阳;肖昌汉;高俊吉;周国华;;磁性物体磁偶极子模型适用性的试验研究[J];应用基础与工程科学学报;2010年05期
9 祝传刚;刘翠华;高国兴;;一种新的磁偶极子反演定位方法研究[J];青岛大学学报(工程技术版);2013年04期
10 刘莹;刘国松;;磁偶极子远场的严格数学处理[J];长春工程学院学报(自然科学版);2014年02期
相关硕士学位论文 前3条
1 余乐;基于磁偶极子模型的三维定位技术研究[D];西南科技大学;2017年
2 李建新;基于正四面体结构差分磁偶极子对内窥镜定位探头微型化的研究[D];福州大学;2003年
3 张同瑞;电磁偶极子LTE基站天线设计与实现[D];南京邮电大学;2014年
,本文编号:1347783
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/1347783.html