黄河入海水沙对三角洲前沿湿地的影响研究
本文选题:黄河三角洲 + 径流量 ; 参考:《山东师范大学》2017年硕士论文
【摘要】:黄河三角洲是由于黄河携带大量泥沙,在入海口附近进行沉淀堆积日积月累形成的,位于山东省东营市内。其入海径流量、泥沙量对黄河三角洲的海岸线变化、湿地面积变化以及植被景观土地利用变化有着显著影响。基于此,本文在国家自然科学基金项目(41371517)和山东省科技计划(2013GSF11706)项目的支持下,以黄河三角洲前沿(现代黄河三角洲)为研究区域,通过野外实地调查,结合研究区长时间尺度(1973-2016年)利津站径流量、泥沙量等水文资料及9期(1977年、1981年、1986年、1991年、1996年、2001年、2006年、2011年和2016年)LANDSET遥感影像,借助SPSS、Eview、ENVI、ArcGIS等专业软件,分析探讨了黄河下游水沙通量变化规律及其二者关系,三角洲前沿湿地岸线、面积、植被景观土地利用类型的变化规律,以及黄河三角洲前沿湿地与黄河入海水沙之间的关系。⑴黄河入海径流量有明显的季节性变化特征。多年平均汛期流量为127.48亿立方米,占多年平均径流量的60%;黄河入海径流量的总体变化趋势是呈下降的,径流量在逐年减少,同时以1979年和1985年为界,可分为枯—丰—枯三个时期,黄河入海径流量的突变点是1985年,年径流量、汛期非汛期径流量的趋势性检验均为显著减少。⑵黄河入海泥沙量也具有明显的季节性变化特征。多年平均汛期输沙量为3.97亿t,占多年平均输沙量的87%,黄河入海输沙量的总体变化是呈下降趋势,输沙量在逐年减少,同时以1985年和1996年为界可分为多沙—中沙—少沙三个时期,黄河入海泥沙量的突变点是1991年,年输沙量、汛期非汛期输沙量的趋势性检验也均为显著减少。⑶黄河三角洲海岸线共增加了87783.84m,增长速率为2194.59m/a,黄河改道对海岸线的变化有着最为直接的影响,1976年黄河河道由刁口河改为清水沟,刁口河岸线开始蚀退,清水沟岸线开始向海延伸。1996年由清水沟改为清8出汊入海口,清水沟岸线开始蚀退,清8出汊口得到发育。⑷黄河三角洲前沿湿地面积变化的总体特征是刁口河流路湿地面积逐渐较少,黄河改道清水沟流路后,清水沟流路湿地面积开始增加,形成新的湿地三角洲,1996年以后由于人工截留,黄河从清8出汊流路入海,黄河三角洲的湿地面积变化开始向北延伸,清水沟流路的湿地则由于海洋侵蚀作用大于黄河泥沙的的淤积作用开始退化,向内陆后退。黄河三角洲1977-2016年湿地面积共减少了85719.06公顷,湿地面积共增加118116.29公顷,净造陆32397.23公顷,造陆速率为809.93hm2/a。⑸黄河三角洲湿地景观土地利用共转出78129.54hm2,包括滩涂、盐碱地和未利用地转出最多,其中未利用地和滩涂分别转出36747.84 km2和33727 km2,分别占1977年滩涂总量和未利用的总量的80%和95%。耕地的面积转入的最多,新增加了17458km2。养殖场及盐田、林地、水库坑塘的面积也增加了,分别为38842.22km2,6815.6 km2和3231.52 km2。⑹黄河三角洲湿地面积、岸线长度分别与径流量的相关性均为正相关,岸线长度的相关性大于面积的相关性,岸线长度与泥沙量的相关性为负,而湿地面积与泥沙量的相关性为正。黄河三角洲岸线长度主要受径流量的影响,呈正相关关系;黄河三角洲湿地面积变化主要受泥沙量的影响更大,呈正相关关系。
[Abstract]:The the Yellow River delta is due to the accumulation of a large amount of sediment in the Yellow River, which is formed by precipitation and accumulation near the entrance to the sea. It is located in Dongying city of Shandong province. Its sea runoff and sediment amount have a significant influence on the change of the coastline of the the Yellow River Delta, the change of wetland area and the change of the land use of vegetation landscape. Based on this, this article is in the country Under the support of the Natural Science Foundation Project (41371517) and the Shandong province science and technology project (2013GSF11706) project, the the Yellow River delta front (modern the Yellow River delta) as the research area, through field field investigation, combined with the long time scale (1973-2016 years) of the study area (1973-2016 years) Lijin station runoff, sediment and other hydrological data and 9 phase (1977, 1981, 1986, 1) 991 years, 1996, 2001, 2006, 2011 and 2016) LANDSET remote sensing images. With the help of SPSS, Eview, ENVI, ArcGIS and other professional software, the change law of water and sediment flux in the lower reaches of the Yellow River and its two relations, the change law of the land use type of the delta front wetland, the area, the vegetation view, and the frontier wetland of the the Yellow River delta are discussed. The relationship between the flow of water and sediment to the sea in the Yellow River. (1) there are obvious seasonal changes in the flow of the Yellow River into the sea. The annual average flood season flow rate is 12 billion 748 million cubic meters, accounting for 60% of the average annual runoff, and the overall change trend of the flow of the Yellow River into the sea is decreasing, the runoff is decreasing year by year, at the same time, it can be divided into the boundary of 1979 and 1985. During the three periods of the dry and dry season, the abrupt point of the flow of the Yellow River into the sea was 1985, the annual runoff and the trend test of the non flood season runoff in the flood season were all significantly reduced. 2. The sediment volume in the Yellow River also had obvious seasonal variation. The sediment transport volume in the average flood season was 397 million T, accounting for 87% of the average annual sediment transport, and the Yellow River was transported to the sea. The overall change of the quantity is decreasing, and the sediment transport volume is decreasing year by year. At the same time, in the period of 1985 and 1996, it can be divided into three periods of multi sand middle sand and less sand. The abrupt point of the sediment quantity in the Yellow River is 1991, the annual sediment volume and the trend test of the sediment transport in the flood season are also significantly reduced. (3) the coastline of the the Yellow River delta increased altogether. 87783.84m, the growth rate is 2194.59m/a, the the Yellow River transformation has the most direct influence on the change of the coastline. In 1976, the the Yellow River river channel was changed from Diao Kou River to Qingshui gully, the Diao Kou river line began to decline, and the shore line of Qingshui gully began to extend to the sea from Qingshui gully to the 8 branch entrance to the sea, the shore line of Qingshui gully began to retreat, and the 8 branch of Qingshui gully was obtained. To develop. (4) the overall characteristics of the change of the wetland area in the frontier of the Yellow River delta is that the area of the Diao Kou River Road wetland is gradually less. After the diversion of the Qingshui channel in the Yellow River, the area of the wetland of Qingshui channel has begun to increase, forming a new wetland Delta. Since 1996, due to artificial interception, the Yellow River has entered the sea from the 8 branches of the Qing Dynasty and the wetland of the the Yellow River Delta. The change of area began to extend northward, and the wetland of Qingshui channel began to degenerate due to the siltation effect of the marine erosion over the Yellow River sediment. The 1977-2016 year wetland area in the Yellow River delta decreased by 85719.06 hectares, the wetland area increased by 118116.29 hectares, and the net land reclamation was 32397.23 hectares, and the rate of land reclamation was 809.93hm2/ The land use of the wetland landscape in the the Yellow River delta is transferred out of 78129.54hm2, including the tidal flat, saline alkali land and unused land, of which 36747.84 km2 and 33727 km2 are transferred out of the unused land and beach, respectively, which account for the maximum of the total and unused total area of 80% and 95%. in 1977, and the new increase of 17458km2. culture. The area of field and salt field, forest land and reservoir pit have also increased, respectively, the area of 38842.22km26815.6 km2 and 3231.52 km2. wetland, the correlation between the length of the coastline and the runoff is positively correlated, the correlation of the length of the coastline is greater than the correlation of the area, the correlation between the length of the coastline and the sediment quantity is negative, but the area of the wetland is the area and the area of the wetland. The correlation of sediment quantity is positive. The length of the Yellow River delta coast line is mainly influenced by the runoff, and there is a positive correlation. The change of the wetland area in the Yellow River delta is mainly influenced by the amount of sediment, which is positively related.
【学位授予单位】:山东师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P901;P33
【相似文献】
相关期刊论文 前10条
1 周后福,李春;黄河干流径流量暂态成分与时频分析及其预测[J];气象科学;2003年02期
2 姜世中;梁川;;降水和植被变化对龙川江径流量的影响[J];四川大学学报(工程科学版);2006年05期
3 梁四海;万力;胡伏生;张建锋;;基于小波方法的黄河源头径流量的周期变化规律[J];南京大学学报(自然科学版);2007年03期
4 毕远山;王海宁;郎洪钢;;河北省山区流域分区径流量一致性修正分析[J];河北水利;2007年06期
5 董恒;刘长燕;王涛涛;梁素伟;;气候变化对海河流域径流量的影响[J];河北水利;2010年04期
6 陈引锋;方迎辉;朱巧英;;黑河日径流量混沌变化特性研究[J];地下水;2010年03期
7 朱佳君;张钰;唐颖丰;何彬;;洮河干流径流量变化趋势分析[J];水土保持研究;2011年03期
8 张茜;肖长来;朱雅萍;翟天放;梁秀娟;;吉林省径流量时空变化特征及成因分析[J];节水灌溉;2013年07期
9 马柱国;葛州坝、唐乃亥径流量的时变特征分析[J];高原气象;1995年01期
10 林承坤,吴小根;长江径流量特性及其重要意义的研究[J];自然杂志;1999年04期
相关会议论文 前10条
1 康玲玲;王金花;刘红梅;王云璋;左仲国;陈江南;;黄河上游兰州站径流量的历史变化分析[A];人水和谐及新疆水资源可持续利用——中国科协2005学术年会论文集[C];2005年
2 康玲玲;董飞飞;王昌高;王云璋;;黄河花园口站汛期径流量未来趋势分析[A];中国水利学会2010学术年会论文集(上册)[C];2010年
3 张国宏;;近60a黄河流域径流量变化特征及其与气候变化的相关性[A];S5 全球典型干旱半干旱地区气候变化及其影响[C];2012年
4 袁杰;董立新;朱金亮;白昊阳;韩旭;;近50年来松花江流域径流量演变规律研究[A];2012全国水资源合理配置与优化调度技术专刊[C];2012年
5 乔光建;;土地利用变化与径流量演变相关性分析[A];中国水利学会2010学术年会论文集(上册)[C];2010年
6 葛朝霞;曹丽青;顾月红;强学民;;气象因子对月径流量预报效果影响的分析[A];中国气象学会2007年年会天气预报预警和影响评估技术分会场论文集[C];2007年
7 刘明春;史志娟;秦三杰;;石羊河流域径流量对气候变化的响应——以西营河为例[A];第28届中国气象学会年会——S11气象与现代农业[C];2011年
8 张建兴;马孝义;赵文举;屈金娜;;基于生命旋回神经网络的径流量预测模型[A];'2008系统仿真技术及其应用学术会议论文集[C];2008年
9 楚泽涵;袁祖贵;;黄河径流量、输沙量与入海口生态环境问题探讨[A];中国地球物理.2003——中国地球物理学会第十九届年会论文集[C];2003年
10 阴法章;王光生;杨广云;张建新;;北方河流月径流量预测[A];中国水利学会2006学术年会暨2006年水文学术研讨会论文集(水文水资源新技术应用)[C];2006年
相关重要报纸文章 前5条
1 记者 贾立君;我国每年融掉一条黄河[N];新华每日电讯;2004年
2 屠新武 三门峡水文水资源局总工程师;略论渭河沿程水沙衰减原因及对黄河的影响[N];黄河报;2008年
3 中国工程院副院长 沈国舫;生态环境建设与水资源保护利用(中)[N];科技日报;2000年
4 屠新武;泾渭分明今何在[N];黄河报;2008年
5 陈永奇;黄委发布《2005年黄河泥沙公报》[N];黄河报;2006年
相关博士学位论文 前1条
1 刘宏权;张家口市永定河流域气候变化及其对水文水资源系统的影响[D];河北农业大学;2013年
相关硕士学位论文 前10条
1 努尔比耶·艾合麦提托合提;气候变化与人类活动对开都河径流量的影响研究[D];新疆大学;2015年
2 刘培亮;1990年以来湖南四水入洞庭湖汛期径流量的变化特征及其驱动因素分析[D];湖南师范大学;2015年
3 占红;城市不透水面的扩张对地表径流量的影响[D];哈尔滨师范大学;2016年
4 谭芬芳;变化环境下洞庭湖水沙演变特征检测与归因分析[D];湖南师范大学;2016年
5 潘彬;黄河入海水沙对三角洲前沿湿地的影响研究[D];山东师范大学;2017年
6 姜晓勇;黑河上游地区径流量的变化趋势及其对气候变化的响应[D];西北师范大学;2008年
7 陈颖;塔里木河流域源流区径流量的变化特征及其与相关气象因子的关系[D];南京信息工程大学;2006年
8 刘晓玲;渭河下游径流量对气候变化及人类活动的响应研究[D];陕西师范大学;2011年
9 张跃华;嘉陵江流域径流量变化规律及其对气候变化的响应[D];西南大学;2012年
10 张晓娅;近60年气候变化和人类活动对长江径流量影响的研究[D];华东师范大学;2014年
,本文编号:1865319
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/1865319.html