Z~d-作用下拓扑熵理论及相关问题的研究

发布时间:2018-05-26 21:40

  本文选题:Bowen维数熵 + Packing维数熵 ; 参考:《合肥工业大学》2017年硕士论文


【摘要】:本文主要讨论了Z~d-作用下拓扑动力系统中的拓扑熵,研究了几种不同定义下的拓扑熵的一些基本性质。具体安排如下:在绪论中,我们简要的介绍了拓扑动力系统的起源及发展现状,说明本文所做的工作。在第二章中,我们介绍了本文所涉及的拓扑动力系统和维数理论的一些基本概念和结论。在第三章中,总结了在Z作用下,不同方式定义的拓扑熵的基本概念与性质。在第四章中,我们研究Z~d-作用下几种不同的拓扑熵:Bowen维数熵,Packing维数熵和Bowen集熵。对Bowen维数熵,我们证明了X的任意子集的Bowen维数熵可以由该子集的点的测度下局部熵来估计:设m是X上的Borel概率测度,E是X上的Borel子集,且0<s<∞.(1)若h_μ(x)≤s对所有的x∈E成立,则h_(top)~B(E)≤s。(2)若h_μ(x)≥s对所有的x∈E成立,且μ(E)>0,则h_(top)~B≥s。对Packing维数熵,我们也证明了类似的结果:设μ是X上的Borel概率测度,E是X上的Borel子集,且0<s<∞,若h*_μ(x)≤s对所有的x∈E成立,则h_(top)~B(E)≤s。进一步我们研究了Z~d-作用下Bowen维数熵,Packing维数熵和Bowen集熵三者间的关系。在第五章中,我们对本文研究的结果做了简要总结,对今后可能研究的问题作进一步展望。
[Abstract]:In this paper, we mainly discuss the topological entropy in the topological dynamical system under the action of Znd-, and study some basic properties of the topological entropy under several different definitions. The specific arrangements are as follows: in the introduction, we briefly introduce the origin and development of topological dynamic system, and explain the work done in this paper. In the second chapter, we introduce some basic concepts and conclusions of topological dynamical system and dimension theory. In the third chapter, we summarize the basic concepts and properties of topological entropy defined in different ways under the action of Z. In the fourth chapter, we study several different topological entropy: Bowen-dimensional entropy packing dimension entropy and Bowen set entropy under the action of ZGD-. For the Bowen dimension entropy, we prove that the Bowen dimension entropy of any subset of X can be estimated from the local entropy under the measure of the point of the subset: let m be the Borel probability measure on X E is the Borel subset on X. And 0 < s < 鈭,

本文编号:1938988

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/1938988.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e5d54***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com