高阶Camassa-Holm方程解的爆破性研究

发布时间:2018-06-03 12:56

  本文选题:高阶Camassa-Holm方程 + 爆破 ; 参考:《江苏大学》2017年硕士论文


【摘要】:非线性偏微分方程解的爆破性质包括解的爆破准则、爆破速率、爆破点集等,是非线性方程研究的基本问题之一。本文主要研究的是二阶Camassa-Holm方程问题解的相关爆破性质。首先通过一系列的先验估计得到二阶Camassa-Holm方程解的爆破准则和爆破速率,然后利用闭集的相关性质得到爆破点集,最后得到了方程的初值解在满足一定的条件下解的爆破点集和非爆破点集。全文主要内容共分为三部分:第一部分研究了二阶Camassa-Holm方程在初值条件有限的情况下解的爆破准则和爆破速率;第二部分利用闭集的相关性质给出了二阶Camassa-Holm方程的爆破点集;第三部分利用先验估计给出了二阶Camassa-Holm方程的初值条件在R上非负或是不变号的情况下的非爆破点集。
[Abstract]:The blasting properties of the solutions of nonlinear partial differential equations include the blasting criterion of solutions, the blasting rate, the set of blasting points, and so on. It is one of the basic problems in the study of nonlinear equations. In this paper, we mainly study the related blasting properties of the solutions of the second order Camassa-Holm equation problem. First, by a series of priori estimates, the blow-up criterion and blasting rate of the solution of the second order Camassa-Holm equation are obtained, and then the set of blasting points is obtained by using the properties of the closed set. Finally, the burst point set and the non-burst point set of the initial solution of the equation are obtained under certain conditions. The main contents of this paper are divided into three parts: in the first part, the blasting criterion and blasting rate of the solution of the second order Camassa-Holm equation are studied under the condition of limited initial value conditions, the second part gives the blasting point set of the second order Camassa-Holm equation by using the properties of the closed set. In the third part, by using the prior estimator, we give the set of non-burst points under the condition that the initial value condition of the second order Camassa-Holm equation is nonnegative or invariant on R.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O175

【相似文献】

相关期刊论文 前2条

1 栗付才,刘其林,谢春红;带非局部源的退化半线性抛物型方程解的爆破[J];数学学报;2003年02期

2 李梅,李玲;带非局部源的双退化半线性抛物型方程解的爆破[J];南京师大学报(自然科学版);2005年02期

相关硕士学位论文 前1条

1 孙叶兰;高阶Camassa-Holm方程解的爆破性研究[D];江苏大学;2017年



本文编号:1972860

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/1972860.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户0cf5b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com