一类发展包含的可解性及解集的结构
发布时间:2018-07-16 13:06
【摘要】:伴随着科学技术的日益进步,微分包含理论与我们的日常生活联系更加紧密.因此开展这方面研究的学者日益增多.同时发展包含解集的结构问题逐渐成为国内外研究的热点内容之一,很多学者开始研究发展包含解集的拓扑结构问题,并获得了一系列的科研成果.本文首先简要介绍了微分包含的发展史及课题的来源和意义.接着给出了相关的概念,还有一些预备知识.然后进一步讨论了积分边值条件下,一类微分发展包含的解的存在性问题,利用不动点定理分析了其解的存在性.然后运用连续选择定理和Leray-Schauder定理讨论了在集值情况下,设定F(t,y)在凸与非凸两种情况下其解的存在性.在此基础上,定义解算子K,根据Dunford-Pettis定理及相关知识证明了 K-1是序列连续的,然后又讨论了微分包含y'(t)+ By(t)∈F(t,y(t))(在一定条件下其解集的性质.最后研究了在积分边值条件下其解集的拓扑结构,利用了同伦方法证明了其解集在C(L,R~N)中是R_δ集.
[Abstract]:This paper gives a brief introduction to the existence of solutions of differential inclusions in the case of convex and non - convex , and then discusses the existence of solutions . Then , we also discuss the existence of solutions of the differential inclusions . Then , we also discuss the existence of solutions of the differential inclusions . Then , we discuss the topological structure of the solutions under the condition of integral edge value . Then we discuss the topological structure of the solution set under the condition of integral boundary value . Then we discuss the homotopic method to prove that the solution set is R _ 未 set in C ( L , R ~ N ) .
【学位授予单位】:渤海大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O175
本文编号:2126480
[Abstract]:This paper gives a brief introduction to the existence of solutions of differential inclusions in the case of convex and non - convex , and then discusses the existence of solutions . Then , we also discuss the existence of solutions of the differential inclusions . Then , we also discuss the existence of solutions of the differential inclusions . Then , we discuss the topological structure of the solutions under the condition of integral edge value . Then we discuss the topological structure of the solution set under the condition of integral boundary value . Then we discuss the homotopic method to prove that the solution set is R _ 未 set in C ( L , R ~ N ) .
【学位授予单位】:渤海大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O175
【参考文献】
相关期刊论文 前2条
1 王俊彦;程毅;孙佳慧;;一类发展包含的端点问题[J];吉林大学学报(理学版);2013年06期
2 王俊彦;高顺川;王春红;;非凸情况下发展包含的反周期问题[J];吉林大学学报(理学版);2013年04期
,本文编号:2126480
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2126480.html