2014年春季黄海浮游植物群落特征及与环境因子的关系

发布时间:2018-07-16 19:05
【摘要】:于2014年4月28日~5月18日在中国黄海(120.99°~125.16°E,31.20°-39.23°N)海域对40个站位采集浮游植物样品,共计173个样品,采用Utermohl方法对样品进行了浮游植物种类鉴定分析,鉴定出7门81属185种浮游植物种类(包括未定种、未定名种及变种)。浮游植物细胞丰度垂直分布,以表层和次表层最高。平面分布特点是近岸高于外海。表层浮游植物细胞丰度介于2.011 × 103-36162.634 × 103cells/L,平均丰度为2118.732 X 103cells/L,蓝藻细胞丰度介于0.001 X 103 ~25004.745 ×103cells/L,平均为1346.160 ×103cells/L;硅藻细胞丰度介于0.539× 103~14931.396 ×103cells/L,平均为430.669 ×103cells/L;甲藻细胞丰度介于0.0524X103~58.248 ×103cells/L,平均为8.142 ×103cells/L;隐藻细胞丰度介于0.001 × 103-42.264 ×103cells/L,平均为7.781 ×103cells/L。硅藻和蓝藻共同刻画了黄海表层的细胞丰度高值区,分别出现在朝鲜半岛西侧和辽南-西朝鲜湾沿岸区域。浮游植物主要优势物种为新月柱鞘藻(Cylindrotheca closterium)、派氏集胞藻(Synechocystispevalekii)、尖尾蓝隐藻(Chroomonas acuta) 、具槽帕拉藻(Paralia sulcatd)、太平洋海链藻(Thalassiosira pacifica)和米氏凯伦藻(Karenia mikimotoi)等。结合调查海区的温盐及深度使用环境因子对黄海进行了海区划分,另使用多元统计方法,如多维定标分析(MDS)和聚类分析(cluster analysis)就生物因子对海区进行了分区。两种分区方法结果大致相似,可将黄海分为5个区域。P-Ⅰ区代表北黄海辽南沿岸的站位,浮游植物细胞丰度介于35419.815 × 103~36162.634 X 103cells/L,平均为35791.225 X103cells/L,其中占总浮游植物生物量99.84%的是蓝藻,优势种为派氏集胞藻;P-Ⅱ区代表黄海西海岸由鲁北至苏北的近岸站位,浮游植物总细胞丰度介于2.007 × 10~48.230 X 103cells/L,平均为23.87×103cell/L,占总浮游植物生物量63.69%的是硅藻,优势种为太平洋海链藻;P-Ⅲ区代表长江冲淡水水域,浮游植物总细胞丰度介于10.110 × 103-37.306× 103cells/L,平均为23.708 × 103cells/L,其中占总浮游植物生物量73.14%的是硅藻,优势种为中肋骨条藻(Skeletonemacf. costatum); P-IV区代表受黄海暖流影响区域,浮游植物总细胞丰度介于5.750 × 103-82.071 X 103cells/L,平均为27.293 ×103cells/L,其中占总浮游植物生物量64.17%的是硅藻,优势种为太平洋海链藻;P-V区代表北黄海的冷水团水域,浮游植物总细胞丰度介于41.302 × 103~8912.301 × 103cells/L,平均为1763.332×103cells/L,其中占总浮游植物生物量89.96%的是硅藻,优势种为新月柱鞘藻;断面分布上,浮游植物细胞丰度高值多集中在近岸表层及黄海暖流流经区域表层。表层浮游植物群落的香农-威纳(Shannon-Wiener)多样性指数介于0.009~3.984,平均值为1.889;Pielou均匀度指数介于0.002~0.946之间,平均值为0.493。总体看来,辽东半岛南部、鲁北-成山角海区、朝鲜半岛西测及苏北沿岸区的浮游植物群落结构异质性很高。对浮游植物群落与环境要素间进行典范对应分析(CCA),获得了优势种与环境因子关系的双序图,影响浮游植物分布的主要环境因子依次是硝酸盐、温度和盐度。
[Abstract]:From April 28, 2014 to May 18th, phytoplankton samples were collected from 40 stations in the Yellow Sea, China (120.99 to 125.16 degrees E, 31.20 -39.23 / N). A total of 173 samples were collected. The species of phytoplankton were identified by Utermohl method, and 185 species of phytoplankton (including undetermined species, unnamed species and varieties) were identified. The abundance of phytoplankton is the highest in the surface and subsurface. The plane distribution is higher than the outer sea. The surface phytoplankton abundance is 2.011 x 103-36162.634 x 103cells/L, the average abundance is 2118.732 X 103cells/L, and the abundances of cyanobacteria are between 0.001 X 103 ~ 25004.745 x 103cells/L, and the average is 1346.160 x 1. 03cells/L; the abundance of diatom cells was 0.539 x 103 ~ 14931.396 x 103cells/L, with an average of 430.669 x 103cells/L, and the abundances of diatom were between 0.0524X103 to 58.248 x 103cells/L and 8.142 x 103cells/L, and the abundance of cryptoalgae was 0.001 * 103-42.264 x 103cells/L, and the average of 7.781 x 103cells/L. diatom and cyanobacteria were depicted together. The high value area of cell abundance in the surface of the Yellow Sea is found in the western side of the Korean Peninsula and the coastal region of the South West Korea Bay, respectively. The dominant species of phytoplankton are Cylindrotheca closterium, Synechocystispevalekii, Chroomonas acuta, Paralia sulcatd, and Taiping. The marine algae (Thalassiosira Pacifica) and Karen alga (Karenia mikimotoi) are divided into the sea area of the Yellow Sea in combination with the sea area's temperature and salt and the deep use of environmental factors. In addition, the multivariate statistical methods, such as multidimensional scaling analysis (MDS) and cluster analysis (cluster analysis), are used to divide the sea area into two subregions. The results of the area method are roughly similar, and the Yellow Sea can be divided into 5 regions, which represent the.P- I region of the north the Yellow Sea coast. The abundance of phytoplankton is between 35419.815 x 103 to 36162.634 X 103cells/L and 35791.225 X103cells/L, which accounts for the total phytoplankton biomass of cyanobacteria, the dominant species is ppl; P- II zone generation. The total cell abundance of phytoplankton is between 2.007 x 10 ~ 48.230 X 103cells/L, averaging 23.87 x 103cell/L, and 63.69% of the total phytoplankton biomass is diatom, the dominant species is the Pacific Sea chain algae, and the P- III region represents the freshwater waters of the Yangtze River, and the total cell abundance of phytoplankton is 10.110. 103-37.306 * 103cells/L, with an average of 23.708 x 103cells/L, and 73.14% of the total phytoplankton biomass is diatom, the dominant species is Skeletonemacf. costatum, and the representative of the P-IV region is affected by the the Yellow Sea warm current, and the total cell abundance of phytoplankton is between 5.750 * 103-82.071 X 103cells/L and an average of 27.293 x 103cells/L. Of which 64.17% of the total phytoplankton biomass is diatom, the dominant species is the Pacific Sea chain algae, the P-V area represents the cold water mass of north the Yellow Sea, the total cell abundance of phytoplankton is between 41.302 x 103 ~ 8912.301 x 103cells/L, and the average is 1763.332 x 103cells/L. The total phytoplankton biomass is diatom, and the dominant species is crescent. In the section distribution, the abundance of phytoplankton abundance was concentrated in the near shore surface and the Yellow Sea warm current flow through the surface of the region. The Shannon - Wiener (Shannon-Wiener) diversity index of the surface phytoplankton community was between 0.009 and 3.984, with an average value of 1.889, and the mean value of Pielou evenness was between 0.002 and 0.946, and the average value was 0.493. overall. It seems that the phytoplankton community structure of the North Korean Peninsula and the northern coast of Liaodong is very high. The model correspondence analysis (CCA) between phytoplankton community and environmental factors has been carried out, and a double sequence diagram of the relationship between dominant species and environmental factors is obtained, and the main environmental factors affecting the distribution of phytoplankton are dependent on the environmental factors. The second is the nitrate, the temperature and the salinity.
【学位授予单位】:天津科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:Q948.8

【相似文献】

相关期刊论文 前10条

1 邬红娟,郭生练,胡传林,刘跃;水库浮游植物群落动态的人工神经网络方法[J];海洋与湖沼;2001年03期

2 孙军,刘东艳,杨世民,郭健,钱树本;渤海中部和渤海海峡及邻近海域浮游植物群落结构的初步研究[J];海洋与湖沼;2002年05期

3 邬红娟;任江红;卢媛媛;;武汉市湖泊浮游植物群落排序及水质生态评价[J];湖泊科学;2007年01期

4 田琪;陈政;;洞庭湖浮游植物群落结构调查与分析[J];内陆水产;2007年08期

5 张玉宇;吕颂辉;齐雨藻;;2003~2004年大亚湾澳头养殖区水域浮游植物群落结构及数量变动特征[J];海洋环境科学;2008年02期

6 林峰竹;吴玉霖;于海成;线薇微;;2004年长江口浮游植物群落结构特征分析[J];海洋与湖沼;2008年04期

7 李扬;吕颂辉;江天久;李欢;萧云朴;尤胜炮;;2006年春夏期间浙江南麂海域浮游植物群落结构特征[J];亚热带植物科学;2009年01期

8 宋淑华;王朝晖;付永虎;谷阳光;;大亚湾大鹏澳海域微表层浮游植物群落研究[J];海洋环境科学;2009年02期

9 刘冬燕;林文鹏;赵敏;;苏州河浮游植物群落结构特征[J];长江流域资源与环境;2009年10期

10 钱奎梅;王丽萍;陈宇炜;;太湖浮游植物群落的有机碳生产及其影响因子分析[J];湖泊科学;2009年06期

相关会议论文 前10条

1 黄邦钦;;中国海典型海区浮游植物群落结构及其对中尺度物理过程的响应[A];庆祝中国藻类学会成立30周年暨第十五次学术讨论会摘要集[C];2009年

2 杨柳;刘正文;陈非洲;;不同生物修复措施对浮游植物群落影响的比较研究[A];第二届全国藻类多样性和藻类分类学术研讨会论文摘要集[C];2010年

3 李涛;刘胜;黄良民;练健生;严岩;王友绍;;大亚湾核电站温排水对区域浮游植物群落的影响[A];中国海洋湖沼学会第九次全国会员代表大会暨学术研讨会论文摘要汇编[C];2007年

4 吴琼;钦娜;吴波;李晓波;王全喜;;上海市滴水湖浮游植物群落结构调查[A];中国海洋湖沼学会藻类学分会第七届会员大会暨第十四次学术讨论会论文摘要集[C];2007年

5 钟超;黄邦钦;;2010年春季南海浮游植物群落结构[A];中国藻类学会第八次会员代表大会暨第十六次学术讨论会论文摘要集[C];2011年

6 黄邦钦;;南海中尺度物理过程对浮游植物群落结构的影响[A];中国藻类学会第八次会员代表大会暨第十六次学术讨论会论文摘要集[C];2011年

7 朱为菊;李晓波;周晓梅;王站付;陶晶晶;王全喜;;上海滴水湖浮游植物群落结构的研究[A];中国藻类学会第八次会员代表大会暨第十六次学术讨论会论文摘要集[C];2011年

8 岑竞仪;吕颂辉;;海口湾浮游植物群落结构特征[A];中国藻类学会第八次会员代表大会暨第十六次学术讨论会论文摘要集[C];2011年

9 何学佳;高亚辉;彭兴跃;;应用光合色素标记物研究2001年2月-6月厦门西海域浮游植物群落结构[A];庆祝中国藻类学会成立30周年暨第十五次学术讨论会摘要集[C];2009年

10 欧林坚;林丽贞;王丹;杨听林;黄邦钦;;台湾海峡及邻近海域浮游植物群落的磷酸盐胁迫与限制[A];中国海洋湖沼学会藻类学分会第七届会员大会暨第十四次学术讨论会论文摘要集[C];2007年

相关博士学位论文 前7条

1 孙静;变性梯度凝胶电泳技术在微藻鉴定及浮游植物群落结构研究中的应用[D];中国海洋大学;2009年

2 肖利娟;华南地区两座大型水库浮游植物群落与演替机制比较[D];暨南大学;2011年

3 金海燕;近百年来长江口浮游植物群落变化的沉积记录研究[D];浙江大学;2009年

4 游江涛;热带亚热带典型水库和湖泊中浮游植物群落结构与颗粒物脂肪酸组成特征的研究[D];暨南大学;2006年

5 赵秀侠;太湖蓝藻水华形成过程中的浮游植物群落动态及其驱动因素研究[D];安徽大学;2013年

6 李秋华;大镜山水库水质改善生态工程效果及浮游植物群落动态特征[D];暨南大学;2008年

7 孙育平;营养盐加富、滤食性鱼类和浮游动物对水库浮游植物群落结构的影响[D];暨南大学;2010年

相关硕士学位论文 前10条

1 苏芝娟;调水调沙对黄河口邻近海域浮游植物群落和环境的影响研究[D];河北师范大学;2015年

2 朱明莹;宁夏沙湖浮游植物群落结构及其与环境因子的相关性研究[D];东北林业大学;2015年

3 张力文;小兴凯湖浮游植物群落结构特征研究[D];东北林业大学;2015年

4 庄道阔;镜泊湖流域浮游植物群落和功能类群特征及水质评价[D];河北大学;2015年

5 李景;温棚高产凡纳滨对虾池塘浮游植物群落和水质因子的特征[D];华中农业大学;2015年

6 张松艳;上海港浮游植物的季节变化与时空分布特征[D];上海海洋大学;2015年

7 欧腾;贵州3座深水水库浮游植物群落结构动态变化及影响因素[D];贵州师范大学;2015年

8 乔芮;基于镜检和浮游植物色素分析的贝类食性研究[D];上海海洋大学;2015年

9 吴芳仪;华阳河湖群和升金湖浮游植物群落结构的研究[D];安徽大学;2016年

10 李沂幰;白石水库浮游植物群落结构的时空格局及粒径谱研究[D];大连海洋大学;2016年



本文编号:2127382

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2127382.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9e138***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com